吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (6): 1895-1913.doi: 10.13278/j.cnki.jjuese.201606308

• 地球探测与信息技术 • 上一篇    

三维地质建模中的多源数据融合技术与方法

吴志春1,2,3, 郭福生2, 林子瑜2, 侯曼青1,2,3, 罗建群1,2,3   

  1. 1. 东华理工大学放射性地质与勘探技术国防重点学科实验室, 南昌 330013;
    2. 东华理工大学地球科学学院, 南昌 330013;
    3. 东华理工大学江西省数字国土重点实验室, 南昌 330013
  • 收稿日期:2016-04-11 出版日期:2016-11-26 发布日期:2016-11-26
  • 作者简介:吴志春(1986),男,讲师,主要从事多元地学数据融合与成矿预测教学与研究,E-mail:wuzhch_ecit@163.com
  • 基金资助:
    中国地质调查局地质大调查项目(1212011120836,1212011220248);放射性地质与勘探技术国防重点学科实验室开放基金项目(RGET1305);江西省数字国土重点实验室开放基金项目(DLLJ201614)

Technology and Method of Multi-Data Merging in 3D Geological Modeling

Wu Zhichun1,2,3, Guo Fusheng2, Lin Ziyu2, Hou Manqing1,2,3, Luo Jianqun1,2,3   

  1. 1. Key Laboratory for Radioactive Geology and Exploration Technology, Fundamental Science for National Defense, East China University of Technology, Nanchang 330013, China;
    2. School of Earth Sciences, East China University of Technology, Nanchang 330013, China;
    3. Key Laboratory for Digital Land and Resources of Jiangxi Province, East China University of Technology, Nanchang 330013, China
  • Received:2016-04-11 Online:2016-11-26 Published:2016-11-26
  • Supported by:
    Supported by Geological Survey Projects of China Geological Survey (1212011120836, 1212011220248), Fundamental Science on Radioactive Geology and Exploration Technology Laboratory (RGET1305) and Key Laboratory for Digital Land and Resources of Jiangxi Province (DLLJ201614)

摘要: 建模数据多源性是三维地质建模最大的特点,模型构建的关键是将这些数据有效地融合以提高模型的精度和可靠性。首先统一地理、地质、物探、化探、遥感、钻探、采矿等建模数据的坐标系和比例尺,构建原始资料数据库。然后运用等高线数据构建数字高程模型(DEM)面,以DEM面为载体实现了地表填图路线PRB(point-routing-boundary)数据、矢量地质图、栅格地质图、遥感影像图等地表地质数据的有效融合;在已有地表地质数据和地下地质数据约束的条件下,通过约束及离散光滑插值技术实现了地表地质数据和地下地质数据的融合;根据已有建模数据确定合理的建模单元,对数据库中的点、线、面、体等数据进行归类,构建与建模单元一致的原始资料数据库。最后在原始资料数据库中,以高精度地质数据为约束对物探数据进行地质解译,综合已有建模数据,并考虑地质体的三维空间展布,实现了不同精度数据之间的融合;以主要建模数据构建初始地质界面,以高精度建模数据对已构建的初始地质界面进行约束,实现了主要建模数据与次要建模数据的融合。其中,点对线约束、点(线)对面约束、面对面约束等约束建模技术在建模数据融合过程中起重要作用。

关键词: 三维地质建模, 多源数据融合, GOCAD软件, 约束技术, 相山火山盆地

Abstract: The polyphyly of the modeling data is the most important character of the 3D geological modeling. The key to the model building is merging these data effectually to increase the accuracy and dependability of the model. This article expounds unifying the coordinate system and scale of geographical, geological, geophysical, geochemical, remote sensing, drilling, mining and other modeling data, then using the datum to construct the original database. Use the contour data to construct the DEM (digital elevation model) plane and define DEM surface as a carrier to realize the effective fusion among the surface geological datum such as the surface geological mapping route PRB (point-routing-boundary) data, vector geological maps and remote sensing images; Under the constraint conditions of the surface geological data and underground geologic data, achieve the fusion of geological data and the underground geological data through constraint and DSI (discrete smooth interpolation) technology; According to the existing modeling data to determine the reasonable modeling unit, classify point, line, surface and volume in database, then build the original database as same as modeling units. In the original database, using high precision geological data as the constraint, integrating modeling data and the three-dimensional spatial distribution of geological body, three-dimensional geological interpretation of geophysical prospecting has realized the integration between different data precision; Constructing the initial geological interface with the main modeling data and constraining the initial geological interface with high precision modeling data, we implement the integration between main modeling data and secondary data. Some constraints like constraining line with point, constraining surface with point (line) and constraining a surface with another surface play an important role in the process of modeling data fusion.

Key words: 3D geological modeling, multi-data merge, GOCAD software, constraint technique, Xiangshan volcanic basin

中图分类号: 

  • P623
[1] 段青梅.西辽平原三维地质建模及地下水数值模拟研究[D].北京:中国地质大学,2006:1-97. Duan Qingmei.Research on Three-Dimensional Geologic Modeling and Numerical Simulation of Groundwater in Xiliao River Plain[D]. Beijing: China University of Geosciences, 2006:1-97.
[2] 李明超,胡兴娥,安娜,等.滑坡体三维地质建模与可视化分析[J].岩土力学,2008,29(5):1355-1360. Li Mingchao, Hu Xing'e, An Na, et al. 3D Geological Modeling and Visual Analysis of Landslide Mass[J]. Rock and Soil Mechanics, 2008, 29(5):1355-1360.
[3] 钟登华,李明超,刘杰.水利水电工程地质三维统一建模方法研究[J].中国科学:E辑:技术科学,2007,37(3):455-466. Zhong Denghua, Li Mingchao, Liu Jie. 3D Integrated Modeling Approach to Geo-Engineering Objects of Hydraulic and Hydroelectric Projects[J]. Science in China: Series E: Technological Sciences, 2007, 37(3):455-466.
[4] 屈红刚,潘懋,刘学清,等.城市三维地质建模及其在城镇化建设中的应用[J].地质通报,2015,34(7):1350-1358. Qu Honggang, Pan Mao, Liu Xueqing, et al. Urban 3D Geological Modeling and Its Application to Urbanization[J]. Geological Bulletin of China, 2015, 34(7):1350-1358.
[5] 张兵,郑荣才,张春生.鄂尔多斯盆地庆64井区延10油层的储层三维地质建模[J].成都理工大学学报(自然科学版),2010,37(1):29-35. Zhang Bing, Zheng Rongcai, Zhang Chunsheng. Reservoir Sedimentary Characteristics and Reservoir Modeling of Well Qing 64 Zone in Yuancheng Oilfield, Ordos Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2010, 37(1):29-35.
[6] 武强,徐华.数字矿山中三维地质建模方法与应用[J].中国科学:地球科学,2013,43(12):1996-2006. Wu Qiang, Xu Hua. Three-Dimensional Geological Modeling and Its Application in Digital Mine[J]. Science China: Earth Sciences, 2013, 43(12):1996-2006.
[7] 毛先成,唐艳华,赖健清,等.凤凰山矿田成矿地质体三维结构与控矿地质因素分析[J].地质学报,2011,85(9):1507-1518. Mao Xiancheng, Tang Yanhua, Lai Jianqing, et al. Three Dimensional Structure of Metallogenic Geologic Bodies in the Fenghuangshan Ore Field and Ore-Controlling Geological Factors[J]. Acta Geologica Sinica, 2011, 85(9):1507-1518.
[8] 毛先成,戴塔根,吴湘滨,等.危机矿山深边部隐伏矿体立体定量预测研究:以广西大厂锡多金属矿床为例[J].中国地质,2009,36(2):424-435. Mao Xiancheng, Dai Tagen, Wu Xiangbin, et al. The Stereoscopic Quantitative Prediction of Concealed Ore Bodies in the Deep and Marginal Parts of Crisis Mines: A Case Study of the Dachang Tin Polymetallic Ore Deposit in Guangxi[J]. Geology in China, 2009, 36(2):424-435.
[9] 吕鹏,张炜,刘国,等.国外重要地质调查机构三维地质填图工作进展[J].国土资源情报,2013(3):13-18. Lü Peng, Zhang Wei, Liu Guo, et al. 3D Geological Mapping Work Progress of Important Geological Investigation Agencies in Foreign[J]. Land and Resources Information, 2013(3):13-18.
[10] 高慧丽,王少勇.让地球深部像玻璃一样透明[N].中国国土资源报,2011-09-22(005). Gao Huili, Wang Shaoyong. Let the Deep Earth as Transparent as Glass[N]. China Land and Resources News, 2011-09-22(005).
[11] 卢民杰,毛晓长.三维可视化:地质调查之"眼":中国地调局三维地质调查试点工作三年巡礼[N].中国矿业报,2015-03-19(B02). Lu Minjie, Mao Xiaochang.3D Visualization: The "Eye" of Geology Survey: Three Dimensional Geological Survey Pilot Tour of China Geological Survey Bureau for Three Years[N]. China Mining News, 2015-03-19(B02).
[12] 潘懋,方裕,屈红刚.三维地质建模若干基本问题探讨[J].地理与地理信息科学,2007,23(3):1-5. Pan Mao, Fang Yu, Qu Honggang. Discussion on Several Foundational Issues in Three-Dimensional Geological Modeling[J]. Geography and Geo-Information Science, 2007, 23(3):1-5.
[13] 罗周全,罗贞焱,刘晓明,等.基于钻孔编录信息可视化解译的矿床三维建模[J].中南大学学报(自然科学版),2010,41(6):2367-2371. Luo Zhouquan, Luo Zhenyan, Liu Xiaoming, et al. Deposit 3D Modeling Based on Visible Interpretation of Drillhole Information[J]. Journal of Central South University (Science and Technology), 2010, 41(6):2367-2371.
[14] 张渭军,王文科.基于钻孔数据的地层三维建模与可视化研究[J].大地构造与成矿学,2006,30(1):108-113. Zhang Weijun, Wang Wenke. 3D Modeling and Visualization of Geological Layers Based on Borehole Data[J]. Geotectonica et Metalbgenia, 2006, 30(1):108-113.
[15] 王润怀,李永树.边界虚拟钻孔在复杂地质体3维建模中的引入与确定[J].测绘学报,2007,36(4):468-475. Wang Runhuai, Li Yongshu. Introduction and Determination of Borderline Virtual Boreholes in 3D Modeling of Complicated Geological Bodies[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(4):468-475.
[16] Tipper J C. A Method and Fortran Program for the Computerized Reconstruction of Three-Dimensional Objects from Serial Sections[J]. Computers & Geosciences, 1977, 3(4):579-599.
[17] Herbert M J, Jones C B, Tudhope D S. Three-Di-mensional Reconstruction of Geoscientific Objects from Serial Sections[J]. Visual Computer, 1995, 11(7):343-359.
[18] Lemon A M, Jones N L. Building Solid Models from Boreholes and User-Defined Cross-Sections[J]. Computers & Geosciences, 2003, 29(5):547-555.
[19] 薛林福,李文庆,张伟,等.分块区域三维地质建模方法[J].吉林大学学报(地球科学版),2014,44(6):2051-2058. Xue Linfu, Li Wenqing, Zhang Wei, et al. A Method of Block-Divided 3D Geologic Modeling in Regional Scale[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(6):2051-2058.
[20] 屈红刚,潘懋,明镜,等.基于交叉折剖面的高精度三维地质模型快速构建方法研究[J].北京大学学报(自然科学版),2008,4(6):915-920. Qu Honggang, Pan Mao, Ming Jing, et al. An Efficient Method for High-Precision 3D Geological Modeling from Intersected Folded Cross-Sections[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2008, 4(6):915-920.
[21] 王丹.基于平面地质图的三维地质建模方法研究[D].南京:南京师范大学,2012:54-60. Wang Dan. Research onThree-Dimensional Geological Modeling Based on Planar Geological Map[D]. Nanjing: Nanjing Normal University, 2012:54-60.
[22] 周良辰,林冰仙,王丹,等.平面地质图的三维地质体建模方法研究[J].地球信息科学学报,2013,15(1):46-54. Zhou Liangchen, Lin Bingxian, Wang Dan, et al. 3D Geological Modeling Method Based on Planar Geological Map[J]. Journal of Geo-Information Science, 2013, 15(1):46-54.
[23] 王国灿,徐义贤,陈旭军,等.基于地表地质调查剖面网络基础上的复杂造山带三维地质调查与建模方法[J].地球科学:中国地质大学学报,2015,40(3):397-406. Wang Guocan, Xu Yixian, Chen Xujun, et al. Three-Dimensional Geological Mapping and Visualization of Complex Orogenic Belts[J]. Earth Science: Journal of China University of Geosciences, 2015, 40(3):397-406.
[24] 吴志春,郭福生,郑翔,等.基于PRB数据构建三维地质模型的技术方法研究[J].地质学报,2015,89(7):1318-1330. Wu Zhichun, Guo Fusheng, Zheng Xiang, et al. The Technical Methods of Three-Dimension Geological Modeling Based on PRB Data[J]. Acta Geologica Sinica, 2015, 89(7):1318-1330.
[25] 李晓军,李培楠,朱合华,等.基于贝叶斯克里金的地下空间多源数据建模[J].同济大学学报(自然科学版),2014,42(3):406-412. Li Xiaojun, Li Peinan, Zhu Hehua, et al. Geomodeling with Integration of Multi-Source Data by Bayesian Kriging in Underground Space[J].Journal of Tongji University (Natural Science), 2014, 42(3):406-412.
[26] Kaufmann O, Martin T. 3D Geological Modeling from Boreholes, Cross-Sections and Geological Maps, Application over Former Natural Gas Storages in Coal Mines[J]. Computers & Geosciences, 2008, 34(3):278-290.
[27] Wu Qiang, Xu Hua, Zou Xukai. An Effective Me-thod for 3D Geological Modeling with Multi-Source Data Integration[J]. Computers & Geosciences, 2005, 31(1):35-43.
[28] 陈建平,于淼,于萍萍,等.重点成矿带大中比例尺三维地质建模方法与实践[J].地质学报,2014,88(6):1195-1197. Chen Jianping, Yu Miao, Yu Pingping, et al. Method andPractice of 3D Geological Modeling at Key Metallogenic Belt with Large and Medium Scale[J]. Acta Geologica Sinica, 2014, 88(6):1195-1197.
[29] 叶思源,吴树仁,何淑军.三维地质建模的数据融合与误差分析[J].桂林理工大学学报,2010,30(3):350-355. Ye Siyuan, Wu Shuren, He Shujun. Data Pretreatment and Error Analysis in 3D Geological Model Construction[J]. Journal of Guilin University of Technology, 2010, 30(3):350-355.
[30] 吴志春,郑翔,张洋洋,等.数字地质填图数据构建断层面的方法[J].辽宁工程技术大学学报(自然科学版),2015,34(11):1264-1270. Wu Zhichun, Zheng Xiang, Zhang Yangyang, et al. Technological Methods of Build Fault Plane Based on Digital Geological Mapping Data[J]. Journal of Liaoning Technical University (Natural Science), 2015, 34(11):1264-1270.
[31] 李超岭.数字地质调查系统操作指南:上、中、下册[M].北京:地质出版社,2011:1-10. Li Chaoling.Operation Guide for Digital Geological Survey System: Volume One, Volume Two, Volume Three[M]. Beijing: Geological Publishing House, 2011:1-10.
[32] 吴立新,史文中,Christopher Gold. 3D GIS与3D GMS中的空间构模技术[J].地理与地理信息科学,2003,19(1):5-11. Wu Lixin, Shi Wenzhong, Christopher Gold. Spatial Modeling Technologies for 3D GIS and 3D GMS[J]. Geography and Geo-Information Science, 2003, 19(1):5-11.
[33] Wu Lixin. Topological Relations Embodied in a Ge-neralized Triprism (GTP) Model for a 3D Geosciences Modeling System[J].Computers & Geosciences, 2004, 30(4):405-418.
[34] Gong Jianya, Cheng Penggen, Wang Yandong. Three-Dimensional Modeling and Application in Geological Exploration Engineering[J]. Computers & Geosciences, 2004, 30(4):391-404.
[35] 刘善伟,张杰,马毅.1:5万地形图对海岸带遥感影像精校正能力的实例分析[J].测绘通报,2009(6):41-44. Liu Shanwei, Zhang Jie, Ma Yi. Analysis of Ability of 1:50000 Topographic Maps for Costal Zone Remote Sensing Image Accurate Rectification[J]. Bulletin of Surveying and Mapping, 2009(6):41-44.
[36] 吴志春,郭福生,刘林清,等.遥感技术在区域地质调查中的应用研究:以江西省1:5万陀上幅区调应用为例[J].东华理工大学学报(自然科学版),2013,36(4):364-374. Wu Zhichun, Guo Fusheng, Liu Linqing, et al. Application of the Remote Sensing Technology in Remote Sensing Survey: A Case Study in Tuoshang, Jiangxi Province by 1:50000[J]. Journal of East China Institute of Technology (Natural Science), 2013, 36(4):364-374.
[37] 吴志春,胡荣泉,郭福生,等.江西省相山铀矿田植被覆盖区遥感蚀变异常提取[J].铀矿地质,2013,29(2):112-118. Wu Zhichun, Hu Rongquan, Guo Fusheng, et al. The Extraction of Alteration Anomaly with Remote Sensing Image of Vegetation Covered Area in Xiangshan Uranium Field, Jiangxi Province[J]. Uranium Geology, 2013, 29(2):112-118.
[38] 吴志春,郭福生,刘林清,等.基于TM/ETM影像的复合法遥感蚀变异常提取应用研究[J].地质与勘探,2013,49(3):511-522. Wu Zhichun, Guo Fusheng, Liu Linqing, et al. Application of Remote Sensing Alteration Anomaly Extraction with the Method of Composite Algorithm Based on TM/ETM Images[J]. Geology and Exploration, 2013, 49(3):511-522.
[1] 薛林福,李文庆,张伟,柴社立,刘正宏. 分块区域三维地质建模方法[J]. 吉林大学学报(地球科学版), 2014, 44(6): 2051-2058.
[2] 刘海英, 刘修国, 李超岭. 基于地质统计学法的三维储量估算系统研究与应用[J]. J4, 2009, 39(3): 541-546.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!