吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (1): 179-188.doi: 10.13278/j.cnki.jjuese.201701204

• 地质工程与环境工程 • 上一篇    下一篇

北京迭断陷内蓟县系热储层温度分布特征

袁利娟1, 杨峰田2   

  1. 1. 北京市地热研究院, 北京 100143;
    2. 吉林大学环境与资源学院, 长春 130021
  • 收稿日期:2016-05-17 出版日期:2017-01-26 发布日期:2017-01-26
  • 作者简介:袁利娟(1985),女,博士,主要从事地热地质方面的研究,E-mail:yuanlijuan2010@163.com
  • 基金资助:
    北京市财政项目(PXM2016_158307_000013);国家自然科学基金青年科学基金项目(41202167)

Temperature Distribution Characteristic of Jixian Reservoir in Beijing Depression

Yuan Lijuan1, Yang Fengtian2   

  1. 1. Beijng Geothermal Research Institute, Beijing 100143, China;
    2. College of Environment and Resources, Jilin University, Changchun 130021, China
  • Received:2016-05-17 Online:2017-01-26 Published:2017-01-26
  • Supported by:
    Supported by Beijing Municipal Finance Projects (PXM2016_158307_000013) and Youth Fund of National Natural Science Foundation of China (41202167)

摘要: 为了掌握北京市典型地区热储层的温度分布特征,为北京地区地热地质研究工作补充数据,搜集了地热开发工作开展较早的北京城区内37口地热井的位置、井深、出水温度、水化学等数据,利用Na-K-Mg图解法评价了地热水的水-岩平衡状态,通过阳离子和SiO2地温计估算了热储温度,分析了北京迭断陷内蓟县系热储层温度垂向分布特征。结果表明:1)37个样品中的35个样品均未达到水-岩平衡,而地热水中SiO2的溶解受控于石英。2)蓟县系1 000~4 000 m深度范围内热储温度分布在65.6~110.0℃范围内,且在垂向上表现出受储层内部地质沉积差异控制的特点:1 000~2 000 m,蓟县系沉积特征变化大,热储温度在垂向上无明显变化规律;2 000 m以下,储层温度表现出随深度增加而增加的趋势,地温梯度约为3.1℃/hm。

关键词: 北京迭断陷, 蓟县系热储层, 地温计, 储层温度, 分布特征

Abstract: In order to find out reservoir temperature distribution of geothermal reservoir in Beijing, aiming to complement the geothermal research of Beijing, data of 37 geothermal water samples from Beijing downtown, where has a relatively long development history of geothermal resources, including position, depth, temperature and chemistry, have been collected. Water-rock equilibrium state of the geothermal water is evaluated by the Na-K-Mg geothermometry, and Jixian Formation reservoir temperatures in the Beijing depression are calculated by using ion and SiO2 geothermometry. Vertical characteristics of reservoir temperature in the Jixian Formation are also analyzed. The results show that 35 out of 37 samples have not reached equilibrium, and the content of dissolved SiO2 is controlled by quartz in the geothermal water. Reservoir temperature of the Jianxian Formation within depth of 1 000-4 000 m ranges from 65.6-110.0℃, and its vertical variation is governed by difference of sedimentation. From 0 to 2 000 m, no obvious trend can be observed due to the drastic change in sedimentation; below 2 000 m, reservoir temperature increases with depth, and the geothermal gradient is 3.1℃/hm.

Key words: Beijing depression, Jixian reservior, geothermometry, reservoir temperature, distribution character

中图分类号: 

  • P632
[1] 刘时彬.地热资源及其开发利用和保护[M].北京:化学工业出版社,2005. Liu Shibin. Exploitation, Utilization and Protection of Geothermal Resources[M]. Beijing:Chemical Industry Press, 2005.
[2] 周训,金晓媚,梁四海,等.地下水科学专论[M].北京:地质出版社,2010. Zhou Xun, Jin Xiaomei, Liang Sihai, et al. Groundwater Science Monographs[M].Beijing:Geological Press, 2010.
[3] 汪集旸,熊亮萍,庞忠和.中低温对流型地热系统[M].北京:科学出版社,1993. Wang Jiyang, Xiong Liangping, Pang Zhonghe. Middle and Low Temperature Convection Type Geothermal System[M]. Beijing:Science Press, 1993.
[4] 陈墨香.华北地热[M].北京:科学出版社,1988. Chen Moxiang. Geothermal in Northern China[M].Beijing:Science Press,1988.
[5] 杨峰田,庞忠和,王彩会,等.苏北盆地老子山地热田成因模式[J].吉林大学学报(地球科学版),2012,42(2):468-475. Yang Fengtian, Pang Zhonghe, Wang Caihui, et al. Genesis Model of Laozishan Geothermal Field, Subei Basin[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(2):468-475.
[6] 李小林,吴国禄,雷玉德,等.青海省贵德扎仓寺地热成因机理及开发利用建议[J].吉林大学学报(地球科学版),2016,46(1):223-232. Li Xiaolin, Wu Guolu, Lei Yude, et al. Suggestions for Geothermal Genetic Mechanism and Exploration of Zhacang Temple Geothermal Energy in Guide County, Qinghai Province[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(1):223-232.
[7] 王莹,周训,于湲,等.应用地热温标估算地下热储温度[J].现代地质,2007,21(4):605-612. Wang Ying, Zhou Xun, Yu Yuan, et al. Application of Geothermometers to Calculation of Temperature of Geothermal Reservoirs[J]. Geoscience, 21(4):605-612.
[8] 张勇.北京地热[M].北京:中国大地出版社,2010. Zhang Yong. Beijing Geothermal[M]. Beijing:China Land Press, 2010.
[9] 白铁珊,任惠利,崔进,等.北京市地热资源潜力的勘查评价[R].北京:北京市地热研究院,2004. Bai Tieshan, Ren Huili, Cui Jin, et al. Exploration and Evaluation of Geothermal Resource in Beijing[R]. Beijing:Beijing Geothermal Research Institute, 2004.
[10] 北京市地质矿产局.北京市区域地质志[M].北京:地质出版社,1982. Beijing Bureau of Geology and Mineral Resources.Regional Geology of Beijing[M]. Beijing:Geological Press, 1982.
[11] 贾三满,郭萌.从高丽营探槽分析黄庄高丽营断裂与地裂缝的关系[J].城市地质,2007,2(4):24-28. Jia Sanman, Guo Meng. The Relation Between Huangzhuang-Gaoliying Fault and Earth Fissure by Gaoliying Trench[J]. Urban Geology, 2007, 2(4):24-28.
[12] 柯柏林.北京市平原区北部孙河断裂及其地热地质特征[J].现代地质,2009,23(1):43-48. Ke Bolin. Characteristics of Geothermal Geology in the Northwestern Part of the Urban Beijing Geothermal Field[J]. Geoscience, 2009, 23(1):43-48.
[13] 于湲. 北京城区地热田地下热水的水化学及同位素研究[D].北京:中国地质大学,2006. Yu Yuan. A Study of Hydrochemistry and Isotopes in Thermal Groundwater in the Urban Geothermal Fileld, Beijing[D]. Beijing:China University of Geosciences, 2006.
[14] Fournier R O.Chemical Geothermometers and Mixing Models for Geothermal Systems[J]. Geothermics, 1997, 5:41-50.
[15] Giggenbach W F. Geothermal Mineral Equilibria[J]. Geochimca et Cosmochimia Acta,1988, 45:393-410.
[16] Fournier R O. Application of Water Geochemistry to Geothermal Exploration and Reservoir Engineering[C]//Ryhack L, Muffer L J P. Geothermal Systems:Principles and Case Histories. New York:[s.n.], 1981:113-118.
[17] Truesdell A H. Summary of Section III:Geothermal Techniques in Exploration[C]//Proceedings, Second United Nations Symposium on the Development and Use of Geothermal Resources. San Francisco:Lawrence Berkeley Laboratory, University of California,1976:53-79.
[18] Arnorsson S. Application of the Silica Geothermo-meter in Low Temperature Hydrothermal Areas in Iceland[J]. Am J Sci, 1975, 275(7):763-784.
[19] Fournier R O. The Behavior of Silica in Hydro-thermal Solutions[J]. Rev Econ Geol, 1986, 2:45-62.
[20] Arnórsson S. Application of the Silica Geother-mo-meter in Low-Temperature Hydrothermal Areas in Iceland[J]. Am J Sci,1975, 275:763-784.
[21] Fournier R O. Chemical Geothermometers and Mixing Models for Geothermal Systems[J]. Geothermics, 1977,5:31-40.
[22] Arnórssonl S, Gunnlaugsson E, Svavarsson H. The Chemistry of Geothermal Waters in Iceland:II:Chemical Geothermometry in Geothermal Investiga-tions, Geochim[J]. Comsmochim,Acta, 1983, 47:567-557.
[1] 郑国东, 覃建勋, 付伟, 杨志强, 赵辛金, 卢炳科. 广西北部湾地区表层土壤As分布特征及其影响因素[J]. 吉林大学学报(地球科学版), 2018, 48(1): 181-192.
[2] 丁清峰, 付宇, 吴昌志, 董莲慧, 屈迅, 曹长胜, 夏明毅, 孙洪涛. 新疆西南天山阿万达金矿床成矿流体演化[J]. 吉林大学学报(地球科学版), 2015, 45(1): 142-155.
[3] 赵林, 郑义, 毛国柱, 郭华. 天津围海造陆区吹填土氮磷的分布特征[J]. 吉林大学学报(地球科学版), 2015, 45(1): 255-264.
[4] 蒙启安,刘一丹,吴海波,李军辉,刘赫. 海拉尔-塔木察格盆地中部断陷带油气形成条件及富集规律[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1737-1746.
[5] 佴磊, 苏占东, 徐丽娜, 杨旭然. 中国主要沼泽草炭土的形成环境及分布特征[J]. J4, 2012, 42(5): 1477-1484.
[6] 张永旺,曾溅辉,高 霞,周士赢. 东营凹陷古近系储层碳酸盐胶结物分布特征及主控因素[J]. J4, 2009, 39(1): 16-0022.
[7] 温忠辉,王彬彬,鲁程鹏,颜陵翔,华骅. 南京市地下水资源开发利用分区[J]. J4, 2009, 39(1): 107-0113.
[8] 张新荣,胡 克,方 石,王东坡. 东北地区泥炭表层沉积中植硅体分布特征[J]. J4, 2007, 37(5): 895-0900.
[9] 刘招君, 董清水,叶松青,朱建伟,郭巍,李殿超,柳蓉,张海龙,杜江峰. 中国油页岩资源现状[J]. J4, 2006, 36(6): 869-0876.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!