吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (2): 573-579.doi: 10.13278/j.cnki.jjuese.201702206
刘娜1, 梁刚1, 董新维1, 祁小丽1, 杨悦锁1,2, 叶康1, 朴云仙1
Liu Na1, Liang Gang1, Dong Xinwei1, Qi Xiaoli1, Yang Yuesuo1,2, Ye Kang1, Piao Yunxian1
摘要: 以新型碳材料氧化石墨烯作为载体,利用共价结合方法制备酪氨酸酶固定化氧化石墨烯复合物,并利用该复合物对苯酚进行催化降解,探讨酶的加载特性和酶的催化活性,以及固定化酪氨酸酶催化降解苯酚的最优条件及储存稳定性。通过对固定化酪氨酸酶进行活性和固定量分析后认为:单位质量载体的酶固定量为1.78 mg/mg,单位质量载体的酶活性为1 880.6 U/mg;固定化酪氨酸酶在30 h内对47.06 mg/L苯酚的降解率可达86.3%,降解反应的最优条件为pH=7.0、温度=25℃;固定化酪氨酸酶在4℃条件下30 d后仍保持初始活性的77.7%,其稳定性优于游离酪氨酸酶。另外,在氧化石墨烯上引入磁颗粒,既简化了酶固定流程,又能做到回收利用。
中图分类号:
[1] Huang Q, Tang J, Weber Jr W J. Precipitation of Enzyme-Catalyzed Phenol Oxidative Coupling Products:Background Ion and pH Effects[J]. Water Research, 2005, 39(13):3021-3027. [2] Dotto G L, Costa J A V, Pinto L A A. Kinetic Studies on the Biosorption of Phenol by Nanoparticles from Spirulina sp LEB 18[J]. Journal of Environmental Chemical Engineering, 2013, 1(4):1137-1143. [3] 康春莉, 冯淑霞, 郭平, 等. 模拟太阳光条件下草酸钠-Fenton试剂降解苯酚[J]. 吉林大学学报(理学版), 2006, 44(4):658-662. Kang Chunli, Feng Shuxia, Guo Ping, et al. Degradation of Phenol by Sodium Oxalate-Fenton Reagent Under Simulated Sunlight[J]. Journal of Jilin University (Science Edition), 2006, 44(4):658-662. [4] 邹东雷, 李婷婷, 高梦薇, 等. 基于响应面的可见光催化材料制备与优化[J]. 吉林大学学报(地球科学版), 2015, 45(6):1833-1838. Zou Donglei, Li Tingting, Gao Mengwei, et al. Preparation and Optimization of the Photocatalytic Materials Under Visible Light with Response Surface Methodology[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(6):1833-1838. [5] Xu D, Yang Z. Cross-Linked Tyrosinase Aggregates for Elimination of Phenolic Compounds from Wastewater[J]. Chemosphere, 2013, 92(4):391-398. [6] Ba S, Haroune L, Cruz-Morato C, et al. Synthesis and Characterization of Combined Cross-Linked Laccase and Tyrosinase Aggregates Transforming Acetaminophen as a Model Phenolic Compound in Wastewaters[J]. Science of the Total Environment, 2014, 487(14):748-755. [7] Ikehata K, Nicell J A. Characterization of Tyrosinase for the Treatment of Aqueous Phenols[J]. Bioresource Technology, 2000, 74(3):191-199. [8] Aytar B S, Bakir U. Preparation of Cross-Linked Tyro-sinase Aggregate[J]. Process Biochemistry, 2008, 43(2):125-131. [9] Seetharam G B, Saville B A. Degradation of Phenol Using Tyrosinase Immobilized on Siliceous Supports[J]. Water Research, 2003, 37(2):436-440. [10] Zhu J, Sun G. Lipase Immobilization on Glutaral-dehyde-Activated Nanofibrous Membranes for Improved Enzyme Stabilities and Activities[J]. Reactive and Functional Polymers, 2012, 72(11):839-845. [11] Dincer A, Becerik S, Aydemir T L. Immobilization of Tyrosinase on Chitosan-Caly Composite Beads[J]. International Journal of Biological Macromolecules, 2012, 50(3):815-820. [12] Bayramoglu G, Akbulut A, Arica M Y. Immobiliza-tion of Tyrosinase on Modified Diatom Biosilica:Enzymatic Removal of Phenolic Compounds from Aqueous Solution[J]. Journal of Hazardous Materials, 2013, 244/245(2):528-536. [13] 杨雪梅,张兰英,张蕾,等. 固定化酶在高浓度有机废水处理中的应用[J].吉林大学学报(地球科学版), 2005, 35(3):398-402. Yang Xuemei, Zhang Lanying, Zhang Lei, et al. Application of Immobilized Proteases in Treating Water with High Concentration Organic Substances[J]. Journal of Jilin University (Earth Science Edition), 2005, 35(3):398-402. [14] 张林,赵宏伟,杨倚寒,等. 单层石墨烯薄膜材料纳米压痕过程的分子动力学解析[J]. 吉林大学学报(工学版),2013, 43(6):1558-1565. Zhang Lin, Zhao Hongwei, Yang Yihan, et al. Molecular Dynamics Simulation of Nanoindentation of Single-Layer Graphene Sheet[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(6):1558-1565. [15] Hermanova S, Zarevucka M, Bousa D, et al. Gra-phene Oxide Immobilized Enzymes Show High Thermal and Solvent Stability[J]. Nanoscale, 2015, 7(13):5852-5858. [16] Zhang F, Zheng B, Zhang J, et al. Horseradish Pe-roxidase Immobilized on Graphene Oxide:Physical Properties and Applications in Phenolic Compound Removal[J]. The Journal of Physical Chemistry C, 2010, 114(18):8469-8473. [17] Zhou Liya, Jiang Yanjun, Gao Jing, et al. Graphene Oxide as a Matrix for the Immobilization of Glucose Oxidase[J]. Applied Biochemistry and Biotechnology, 2012, 168(6):1635-1642. [18] Kampmann M, Boll S, Kossuch J, et al. Efficient Im-mobilization of Mushroom Tyrosinase Utilizing Whole Cells from Agaricus Bisporus and Its Application for Degradation of Bisphenol A[J]. Water Research, 2014, 57(5):295-303. [19] Ispas C R, Ravalli M T, Steere A, et al. Multifunc-tional Biomagnetic Capsules for Easy Removal of Phenol and Bisphenol A[J]. Water Research, 2010, 44(6):1961-1969. [20] Xu D, Yang Y, Yang Z. Activity and Stability of Cross-Linked Tyrosinase Aggregates in Aqueous and Nonaqueous Media[J]. Journal of Biotechnology, 2011, 152(1/2):30-36. |
[1] | 邹东雷, 李婷婷, 高梦薇, 钱宁, 张高瑞洋, 董双石. 基于响应面的可见光催化材料制备与优化[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1833-1838. |
[2] | 杨悦锁, 雷玉德, 杜新强, 韩建超, 曹玉清. 当地下水邂逅DNA:石油类有机污染及其生物降解[J]. J4, 2012, 42(5): 1434-1445. |
[3] | 苏小四, 吕航, 张文静, 张玉玲, 焦珣. 某石油污染场地地下水石油烃生物降解的13C、34S同位素证据[J]. J4, 2011, 41(3): 847-854. |
[4] | 夏雨波, 杨悦锁, 杜新强, 杨明星. 石油污染场地浅层地下水MNA原位修复潜能及微生物降解效益评估[J]. J4, 2011, 41(3): 831-839. |
[5] | 张兰英, 张蕾, 岳建伟, 刘娜, 孙恒战. 吗啉废水的生化处理工艺[J]. J4, 2011, 41(2): 536-540. |
[6] | 毕海涛, 张兰英, 刘娜, 杨国军, 徐国欣, 朱博麟. 无机材料对PVA-H3BO3包埋固定化方法的改进[J]. J4, 2011, 41(1): 241-246. |
[7] | 王晓丽, 李鱼, 王一喆, 杜显元, 王婷, 刘建林. 粘土矿物的掺杂对沉积物吸持Cu、Zn能力的影响[J]. J4, 2010, 40(1): 183-187. |
[8] | 任何军, 刘娜,高松,张兰英,张玉玲,周睿. 假单胞菌DN2对多氯联苯的降解及bphA1核心序列测定[J]. J4, 2009, 39(2): 312-0316. |
[9] | 刘虹,张兰英,刘娜,刘鹏. 低温下固定化微生物降解水体中阿特拉津的效果[J]. J4, 2008, 38(6): 1027-1031. |
[10] | 董 军,张 晶,赵勇胜,张伟红,吕爱民,韩 融,刘莹莹,李志斌. 渗滤液污染物在地下环境中的生物地球化学作用[J]. J4, 2007, 37(3): 587-0591. |
[11] | 郭 平,高红杰,王 瑾,康春莉. 不同环境条件对固定化细菌吸附低浓度Cd2+规律的影响[J]. J4, 2007, 37(2): 375-379. |
[12] | 赵 吉吉,张兰英,周佳欣. 降解多氯联苯嗜盐菌的分离和降解特性[J]. J4, 2007, 37(2): 380-383. |
[13] | 邹东雷,袁静敏,赵晓波,原文双,杨忠平. 固定化生物技术在合成染料废水处理中的应用[J]. J4, 2006, 36(04): 613-615. |
[14] | 樊冬玲,赵勇胜,董 军. 胶粒吸附苯酚实验研究[J]. J4, 2006, 36(04): 673-676. |
[15] | 杨雪梅,张兰英,张蕾,于宏兵,张玉玲. 固定化酶在高浓度有机废水处理中的应用[J]. J4, 2005, 35(03): 398-0402. |
|