吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (2): 343-349.doi: 10.13278/j.cnki.jjuese.20170264

• 地球物理数据处理与解释技术 •    下一篇

基于模型参数化的地震波走时与射线路径计算

孙建国, 李懿龙, 孙章庆, 苗贺   

  1. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2017-08-14 出版日期:2018-03-26 发布日期:2018-03-26
  • 通讯作者: 李懿龙(1993-),男,主要从事地震波传播理论与成像技术、计算地球物理等方面的研究工作,E-mail:ylli16@mails.jlu.edu.cn E-mail:ylli16@mails.jlu.edu.cn
  • 作者简介:孙建国(1956-),男,教授,博士生导师,主要从事地下波动理论与成像技术、计算地球物理、岩石物理、科学计算方法与技术、反射地震资料处理、钻孔电磁探测理论、地球物理中的天线问题、可视化技术及其在地球物理场数值模拟与观测数据解释中的应用等方面的教学和研究工作,E-mail:sun_jg@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41274120,41404085);吉林大学优秀青年教师培养计划(419080500337)

Computation of Seismic Traveltimes and Raypath Based on Model Parameterization

Sun Jianguo, Li Yilong, Sun Zhangqing, Miao He   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2017-08-14 Online:2018-03-26 Published:2018-03-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41274120, 41404085) and Outstanding Young Teacher Training Program of Jilin University (419080500337)

摘要: 模型的建立与描述是地震资料分析与处理的基础,合理的模型参数化方式对于地震正反演的各个方面都有很好的效果,其中射线追踪在正演模拟、层析成像及偏移等研究领域中都占有很重要的地位。本文针对地震波走时与射线路径计算,设计了一种将离散模型连续化的最小二乘模型参数化方法,分别对速度模型和走时模型进行模型参数化,然后进行梯度速度模型验算及误差分析。计算结果表明,该模型参数化方法使走时计算精度从10-2提高到10-3,使射线路径的计算精度提高了14.33%。最后通过经典Marmousi模型和Sigsbee 2A模型实例验证,充分证明了该模型参数化方法的有效性及普遍适用性。

关键词: 模型参数化, 走时计算, 路径追踪, 最小二乘

Abstract: The establishment and description of the model is the basis of seismic data analysis and processing, and the reasonable model parameterization method has achieved good results for all aspects of seismic forward and inversion. Ray tracing plays an important role in the fields of forward modeling, tomography, and migration. The authors studied the ray tracing method, designed a model of least squares parametric method,parameterized the model of velocity and travel time respectively, and then tested it by using the velocity gradient model and error analysis. The results show that the model parameterization improves the precision of travel time calculation and the tracking ray path. The validity and applicability of the model parameterization method are proved by the example of the classical Marmousi model and the Sigsbee 2A model.

Key words: model parameterization, travel time calculation, track ray path, least squares

中图分类号: 

  • P631.4
[1] 李贞,郭飚,刘启元,等. 地震层析成像中模型参数化研究进展[J]. 地球物理学进展,2015, 30(4):1616-1624. Li Zhen, Guo Biao, Liu Qiyuan, et al. Parameterization in Seismic Tomography[J]. Progress in Geophysics, 2015, 30(4):1616-1624.
[2] Thurber C H, Aki K. Three-Dimensional Seismic Ima-ging[J]. Annual Review of Earth and Planetary Sciences, 1987,15(1):115-139.
[3] Dziewonski A M, Woodhouse J H. Global Images of the Earth's Interior[J]. Science, 1987, 236:37-48.
[4] Sena A G, Toksoz M N. Kirchhoff Migration and Ve-locity Analysis Forconverted and non Converted Waves in Anisotropic media[J]. Geophysics, 1993, 58:265-276.
[5] Julian B R, Gubbins D. Three Dimensional Seismic Ray Tracing[J]. Geophysics, 1977, 43:95-119.
[6] Cerveny V. Seismic Ray Theory[M]. Cambridge:Cam-bridge University Press, 2001.
[7] Moser T J. Shortest Path Calculation of Seismic Rays[J]. Geophysics, 1991, 56:59-67.
[8] Asakawa E, Kawanaka T. Seismic Ray Tracing Using Linear Traveltime Interpolation[J]. Geophysical Prospecting, 1993, 41(1):99-111.
[9] 陈景波,秦孟兆.辛几何算法在射线追踪中的应用[J].数值计算与计算机应用,2000, 43(4):254-265. Chen Jingbo, Qin Mengzhao. Ray Ttacing by Symplectic Algorithm[J]. Journal on Numerical Methods and Computer Applications, 2000, 43(4):254-265.
[10] 罗明秋,刘洪,李幼铭.地震波传播的哈密顿表述及辛几何算法[J].地球物理学报,2001, 44(1):120-127. Luo Mingqiu, Liu Hong, Li Youming. Hamiltionian Deacription and Symplectic Method of Seismic Wave Propagtion[J]. Chinese Journal of Geophysics, 2001, 44(1):120-127.
[11] Vinje V, Iversen E G, Joystdal H. Traveltime and Amplitude Estimation Using Wavefront Construction[J]. Geophysics, 1993, 58(8):1157-1166.
[12] 石秀林,孙建国,孙辉,等. 基于波前构建法的时间域深度偏移:Delta波包途径[J].吉林大学学报(地球科学版),2016,46(6):1847-1854. Shi Xiulin, Sun Jianguo, Sun Hui, et al. Depth Migration in Time Domain Using Wavefront Construction:Delta Packet Approach[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(6):1847-1854.
[13] 孙章庆. 复杂地表条件下地震波走时计算方法研究[D].长春:吉林大学,2008. Sun Zhangqing. Study on the Computation Method of Seismic Traveltimes Including Surface Topography[D]. Changchun:Jilin University, 2008.
[14] Vidle J. Finite-Difference Calcaulation of Traveltimes[J]. Bull Seism Soc Am, 1988, 78(6):2062-2076.
[15] Sethian J A, Popovici A M. 3-D Traveltime Com-putation Using the Fast Marching Method[J]. Geophysics, 1999, 64(2):516-523.
[16] 张东,张婷婷,乔友锋,等. 三维旅行时场B样条插值射线追踪方法[J]. 石油地球物理勘探,2013, 48(4):559-566. Zhang Dong, Zhang Tingting, Qiao Youfeng, et al. A 3-D Ray Method Based on B-Spline Traveltime Interpolation[J]. Oil Geophysical Prospecting, 2013, 48(4):559-566.
[17] Nolet G. A Breviary of Seismic Tomography:Ima-ging the Interior of the Earth and Sun[M]. Cambriage:Cambriage University Press, 2008.
[1] 曾昭发, 李文奔, 习建军, 黄玲, 王者江. 基于DOA估计的阵列式探地雷达逆向投影目标成像方法[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1308-1318.
[2] 牟丹, 王祝文, 黄玉龙, 许石, 周大鹏. 基于最小二乘支持向量机测井识别火山岩类型:以辽河盆地中基性火山岩为例[J]. 吉林大学学报(地球科学版), 2015, 45(2): 639-648.
[3] 李伟东,林楠,刘德利,孙晓磊. 用于变形监测的最小二乘滤波数据处理[J]. 吉林大学学报(地球科学版), 2014, 44(6): 2068-2072.
[4] 黄修东,束龙仓,崔峻岭,童坤,周庆鹏. 人工回灌物理堵塞特征试验及渗滤经验公式推导[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1966-1972.
[5] 黄建平,薛志广,步长城,李振春,王常波,高国超,曹晓莉,李国磊. 基于裂步DSR的最小二乘偏移方法[J]. 吉林大学学报(地球科学版), 2014, 44(1): 369-374.
[6] 陈永良, 李学斌. 基于核最小二乘模型的矿产靶区预测[J]. J4, 2011, 41(3): 937-944.
[7] 佴磊, 彭文, 袁明哲, 周能娟. 基于经验模态分解和加权最小二乘支持向量机的采空区地面塌陷预测[J]. J4, 2011, 41(3): 799-804.
[8] 温忠辉, 任化准, 束龙仓, 王恩, 柯婷婷, 陈荣波. 岩溶地下河日流量预测的小样本非线性时间序列模型[J]. J4, 2011, 41(2): 455-458.
[9] 李慧盈, 李文辉, 陈圣波. 一种机载雷达点云数据的快速分类方法[J]. J4, 2010, 40(5): 1205-1210.
[10] 陈南祥,曹连海,李梅,黄强. 偏最小二乘回归神经网络的矿坑涌水量预测[J]. J4, 2005, 35(06): 766-0770.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!