吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (2): 350-363.doi: 10.13278/j.cnki.jjuese.20170284

• 地球物理数据处理与解释技术 • 上一篇    下一篇

工程地震折射波解释方法研究进展

刘四新, 朱怡诺, 王旭东, 宋二乔, 贺文博   

  1. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2017-07-30 出版日期:2018-03-26 发布日期:2018-03-26
  • 通讯作者: 朱怡诺(1994-),女,硕士研究生,主要从事工程地震方面的研究,E-mail:Zn200910233@163.com E-mail:Zn200910233@163.com
  • 作者简介:刘四新(1966-),男,教授,博士生导师,主要从事探地雷达、钻孔雷达及电磁波测井等的方法理论和应用方面的研究,E-mail:liusixin@jlu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2016YFC0600505);国家自然科学基金项目(41574109)

Progress of Engineering Seismic Refraction Interpretation Method

Liu Sixin, Zhu Yinuo, Wang Xudong, Song Erqiao, He Wenbo   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2017-07-30 Online:2018-03-26 Published:2018-03-26
  • Supported by:
    Supported by National Key Research and Development Program of China (2016YFC0600505) and National Natural Science Foundation of China (41574109)

摘要: 地震折射波勘探是工程与环境地球物理中应用最为广泛的方法之一。作为一种简洁方便又经济实惠的勘探方法,它可为工程地质提供近地表地层起伏变化和速度横向变化以及潜水面变化资料等。随着工程地质勘查和城市地质勘探工作的发展,工程地震折射波法数据处理与解释变得尤为重要。本文主要介绍了浅层地震折射波法的发展历程、应用条件,并总结和讨论了几种主要折射波解释方法的原理。在此基础上,比较并讨论了各种方法在应用中的优势和不足,阐述了近年来国内外浅层地震折射波法的发展现状及趋势,并着重介绍了作为研究热点的折射层析成像方法。研究表明:当探测深度较浅且分界面足够平整、界面倾角较小时,最方便的解释方法是截距时间法;当勘探目标的深度达到25 m时,t0差数法最为适用;勘探目标埋深超过25 m时,应当使用广义互换法。随着勘探精度要求越来越高,使用折射波走时层析成像技术可以满足纵横向速度变化的近地表地层,包括大倾角地层、隐伏层、界面起伏层等。

关键词: 工程地震, 折射波, 层析成像

Abstract: Seismic refraction exploration is one of the most widely used methods in engineering and environmental geophysics. As a simple, convenient and economical exploration method, it can provide the engineering geology with the fluctuation of the ground floor, the variation of velocity,and the variation of the diving surface. With the development of engineering geological and urban geological exploration, the data processing and interpretation of seismic refraction wave method is even more important. In this paper, we mainly introduce the development history and application conditions of the shallow seismic refraction wave method, and summarize and discuss the principle of several main refractive wave interpretation methods. On this basis, we compare and discuss the advantages and disadvantages of various methods in the application, expounds the shallow refraction wave method at home and abroad in recent years, the development status and trend, and emphatically introduce the research focus as a method of refraction tomographic imaging. The research shows that when the detection depth is relatively shallow and the boundary of the interface is sufficient to smooth the angle of the interface, the most convenient interpretation method is the intercept time method; when the depth of exploration reaches 25 m, the t0 difference method is most applicable; the generalized interchange method should be used when the exploration target is buried deeper than 25 m. As its high precision, the use of refraction wave traveltime tomography technology can satisfy the near-surface strata with horizontal velocity changes, including the formation of large dip angle, concealed layer, interface fluctuation, etc.

Key words: engineering seismic, refraction, tomography

中图分类号: 

  • P631.4
[1] 北京铀矿地质研究所浅层地震组. 浅层地震探测方法与技术[M]. 北京:原子能出版社,1982:41-84. Shallow Seismic Group of Beijing Institute of Uranium Geology. Methods and Techniques for Shallow Seismic Detection[M]. Beijing:Atomic Energy Publishing House, 1982:41-84.
[2] 熊章强,方根显. 浅层地震勘探[M]. 北京:地震出版社,2002:79-90. Xiong Zhangqiang, Fang Genxian. Shallow Seismic Exploration[M]. Beijing:Seismological Press, 2002:79-90.
[3] 葛双成,李小平,邵长云,等. 地震折射和电阻率法在水库坝址勘察中的应用[J]. 地球物理学进展,2008,23(4):1299-1303. Ge Shuangcheng, Li Xiaoping, Shao Changyun, et al. Application of Seismic Refraction and Resistivity for Exploration of Reservoir Dam Site[J]. Progress in Geophysics, 2008, 23(4):1299-1303.
[4] 喻岳钰,曹代勇,邢春颖,等. 黄土塬区模型约束折射静校正技术应用研究[J]. 地球物理学进展,2016,31(3):1373-1380. Yu Yueyu, Cao Daiyong, Xing Chunying, et al. Application of the Technology of Model Constraint Refraction Statics on Loess Area[J]. Progress in Geophysics, 2016, 31(3):1373-1380.
[5] Steven D S, Jeffery J N, Seth W, et al. Using Near-Surface Seismic Refraction Tomography and Multichannel Analysis of Surface Waves to Detect Shallow Tunnels:A Feasibility Study[J]. Journal of Applied Geophysics, 2013, 99:60-65.
[6] Rucker M L. Integrating Seismic Refraction and Sur-face Wave Data Collection and Interpretation for Geotechnical Site Characterization[C]//Conference on Applied Geophysics. Missouri:Geophysics, 2006.
[7] 王洪. 折射波法在堤坝病害探查中的应用研究[D]. 长沙:中南大学,2007. Wang Hong. Study on the Application of Refraction Wave Method in Disease Detection of Embankments and Dams[D]. Changsha:Central South University, 2007.
[8] Thurber C, Ritsema J. Theory and Observations:Seismic Tomography and Inverse Methods[J]. Treatise on Geophysics, 2007, 1:323-360.
[9] Sheehan, Jacob R, William E, et al. An Evaluation of Methods and Available Software for Seismic Refraction Tomography Analysis[J]. Journal of Environmental and Engineering Geophysics, 2005, 10(1):21-34.
[10] Thornburgh H R. Wave-Front Diagrams in Seismic Interpretation[J]. American Association of Petroleum Geologists Bulletin, 1930, 14:185-200.
[11] Gardner L W. AnAreal Plan of Mapping Subsurface Structure by Refraction Shooting[J]. Geophysics, 1939, 4(4):247.
[12] Ewing M,Woollard, Vine A C, et al. Geophysical Investigations in the Emerged and Submerged Atlantic Coastal Plain:Part IV:Cape May, New Jersey, Section[J]. Geological Society of America Bulletin, 1940, 51:1821-1840.
[13] Hales F W. An Accurate Graphical Method for Inter-preting Seismic Refraction Lines[J]. Geophysical Prospecting, 1958, 6(3):285-294.
[14] Гамбурцев Г A. Основы Сейсморазведки Гостоптех-Издаг Москва[M]. Матемсб:Гостоптехиздат, 1959.
[15] Hagedoorn J G. The Plus-Minus Method of Inter-preting Seismic Refraction Sections[J]. Geophysical Prospecting, 1959, 7(2):158-182.
[16] Hawkins L V. The Reciprocal Method of Routine Shallow Seismic Refraction Investigations[J]. Geophysics, 1961, 26(6):806.
[17] Palmer D. An Introductionto the Generalized Reci-procal Method of Seismic Refraction Interpretation[J]. Geophysics, 1981, 46(11):1508.
[18] Palmer D. Imaging Refractors with the Convolution Section[J]. Geophysics, 2001, 66:1582-1589.
[19] Hearn T M, Clayton R W. Lateral Velocity Vari-ations in Southern California:Ⅱ:Results for the Lower Crust fromPnWaves[J]. Bull Seism Soc Am, 1986, 76:511-520.
[20] Baumgarte J. Konstruktive Darstellungvon Seismi-chen Horizon Tenunter Berock Sichtigung Der Strahlen Brechung ImRaum[J]. Geophysical Prospecting, 1955, 3(2):126-162.
[21] Schenck F L. Refraction Solutions by Wavefront Targeting:Abstract[J]. Aapg Bulletin, 1963, 47(9):1775-1776.
[22] Adachi R. On aProof of Fundamental Formura Concerning Refraction Method of Geophysical Prospecting and Some Remarks[J]. Kumamoto Journal of Science L Ser A:Mathematics Physics & Chemistry, 1954, 2:18-23.
[23] Mota L. Determination of Dips and Depths of Geological Layers by the Seismic Refraction Method[J]. Geophysics, 1954, 19(2):242.
[24] Johnson S H. Interpretation of Split-Spread Refrac-tion Data in Terms of Plane Dipping Layers[J]. Geophysics, 1976, 41(3):418.
[25] 王奇. 浅层地震气折射波法在工程应用中的研究[D]. 成都:成都理工大学,2010. Wang Qi. Study of Shallow Seismic Gas Refraction Wave Method in Engineering Application[D]. Chengdu:Chengdu University of Technology, 2010.
[26] 陈滋康. 用共轭点法解释折射时距曲线及其计算程序[J]. 物探与化探,1986,10(5):350-355. Chen Zikang. Explain Refraction Time Distance Curve and Its Calculation Procedure Using Conjugate Point Method[J]. Geophysical and Geochemical Exploration, 1986, 10(5):350-355.
[27] 熊章强,方根显. 浅层折射波法在隧道工程地质调查中的应用[J]. 水文地质工程地质,2001,28(1):63-66. Xiong Zhangqiang, Fang Genxian. Application of Refractive Method in Tunnel-Engineering Exploration[J]. Hydrogeology and Engineering Geology, 2001, 28(1):63-66.
[28] 彭骁,王鹏. 浅层地震折射波法在候家梁隧道地质勘查中的应用[J]. 工程地球物理学报,2013,10(5):631-636. Peng Xiao, Wang Peng. The Application of Shallow Seismic Refraction to Houjialiang Tunnel Exploration[J]. Chinese Journal of Engineering Geophysics, 2013,10(5):631-636.
[29] 包勋,汤浩,朱照拔. 综合物探技术在探测隐伏断层中的应用[J]. 人民珠江,2016,37(12):29-32. Bao Xun, Tang Hao, Zhu Zhaoba. Application of Comprehensive Geophysical Prospecting Method to Buried Fault Detection[J]. Pearl River, 2016, 37(12):29-32.
[30] 张恒超,李学聪. 模型法、扩展广义互换法(EGRM)、沙丘曲线法静校正对比研究及在ZGE沙漠资料处理中的应用[J]. 地球物理学进展,2010,25(6):2193-2198. Zhang Hengchao, Li Xuecong. Study of Static Corrections by the Model Method, Extended Generalized Reciprocal Method (EGRM) and Sand Dune Curve Method and Their Application to Seismic Data Processing in the ZGE Area[J]. Progress in Geophysics, 2010, 25(6):2193-2198.
[31] Tak M L. Controls of Traveltime Data and Problems of the Generalized Reciprocal Method[J]. Geophysics, 2003, 68(5):1626-1632.
[32] Sjögren B. A Brief Study of Applications of the Generalized Reciprocal Method and of Some Limitations of the Method[J]. Geophysical Prospecting, 2000, 48(5):815-834.
[33] Franco R D. Multi-Refractor Imaging with Stacked Refraction Convolution Section[J]. Geophysical Prospecting, 2005, 53(3):335-348.
[34] Aki K, Lee W H K. Determination of Three-Dimensional Velocity Anomalies Under a Seismic Array Using First P Arrival Times from Local Earthquakes:1:A Homogeneous Initial Model[J]. Journal of Geophysical Research Atmospheres, 1976, 81(23):4381-4399.
[35] 景月红. 地震初至波走时层析成像与近地表速度建模[D]. 西安:长安大学,2009. Jing Yuehong. Seismic First Break Travel-Time Tomography and Its Application in Near-surface Velocity Model Building[D]. Xi'an:Chang'an University, 2009.
[36] 陈国金,高志凌,吴永栓,等. 井间地震层析成像中自动生成初始速度模型的方法研究[J]. 石油物探,2005,44(4):339-342. Chen Guojin, Gao Zhiling, Wu Yongshuan, et al. Automatically Building the Initial Velocity Model in the Seismic Crosshole Tomography[J]. Geophysical Prospecting for Petroleum, 2005, 44(4):339-342.
[37] 段心标,金维浚. 井间地震层析成像初始速度模型[J].地球物理学进展,2007,22(6):1831-1835. Duan Xinbiao, Jin Weijun. Initial Velocity Model of Crosswell Seismic Tomography[J]. Progress in Geophysics, 2007, 22(6):1831-1835.
[38] 刘玉柱,丁孔芸,董良国. 初至波走时层析成像对初始模型的依赖性[J]. 石油地球物理勘探,2010,45(4):502-511. Liu Yuzhu, Ding Kongyun, Dong Liangguo. The Dependence of First Arrival Travel Time Tomography on Initial Model[J]. Oil Geophysical Prospecting, 2010, 45(4):502-511.
[39] Engdahl E R. Relocation of Intermediate Depth Earth-quakes in the Central Aleutians by Seismic Ray Tracing[J]. Nature, 1973, 245(141):23-25.
[40] Julian B R,Gubbins D. Three Dimensional Seismic Ray Tracing[J]. J Geophysics,1977, 43:95-113.
[41] Nakanishi I, Yamaguchi K. A Numerical Experiment on Nonlinear Image Reconstruction from First-Arrival Times for Two-Dimensional Island Arc Structure[J]. Earth Planets and Space, 1986, 34(2):195-201.
[42] Asakawa E,Kawanaka T. Seismic Ray Tracing Using Linear Traveltime Interpolation[J]. Geophysical Prospecting, 2010, 41(1):99-111.
[43] Moser T J. Shortest Path Calculation of Seismic Rays[J]. Geophysics, 1991, 56(1):59-67.
[44] Cheng N. Minimum Traveltime Calculation in 3-D Graph Theory[J]. Geophysics, 1996, 61(6):1895-1898.
[45] Cardarelli E,Cerreto A. Ray Tracing in Elliptical Anisotropic Media Using the Linear Traveltime Interpolation (LTI) Method Applied to Traveltime Seismic Tomography[J]. Geophysical Prospecting, 2002, 50(1):55-72.
[46] 张东,谢宝莲,杨艳,等. 一种改进的线性走时插值射线追踪算法[J]. 地球物理学报,2009,52(1):200-205. Zhang Dong, Xie Baolian, Yang Yan, et al. A Ray Tracing Method Based on Improved Linear Traveltime Interpolation[J]. Chinese Journal of Geophysics, 2009, 52(1):200-205.
[47] Vidale J. Finite-Difference Calculation of Travel Time in Three Dimensions[J]. Geophysics, 1990, 55:521-526.
[48] Tsai Y H R, Cheng L T,Osher S, et al. Fast Sweeping Algorithms for a Class of Hamilton-Jacobi Equations[J]. SIAM Journal on Numerical Analysis, 2004, 41(2):659-672.
[49] Sethian J A. A Fast Marching Level Set Method for Monotonically Advancing Fronts[J]. Proceedings of the National Academy of Science of the United States of America, 1996, 93(4):1591-1595.
[50] Sethian J A. Level Set Methods and Fast Marching Method[M]. Cambridge:Cambridge University Press, 1999:400.
[51] 王飞. 跨孔雷达走时层析成像反演方法的研究[D]. 长春:吉林大学,2014. Wang Fei. Research onCrosshole Radar Traveltime Tomography[D]. Changchun:Jilin University, 2014.
[52] Yee K S. Numerical Solution of Initial Boundary Value Problems Involving Maxwell Equations in Isotropic Media[J]. IEEE Trans Antennas Propagat, 1966, 14(3):302-307.
[53] Yoon Y S, Yeh W G. Parameter Identification in an Inhomogeneous Medium with the Finite-Element Method[J]. Society of Petroleum Engineers Journal, 1976, 16(4):217-226.
[54] Herman G T, Brouw W N. Book-Review:Image Re-construction from Projections:The Fundamentals of Computerized Tomography[J]. Space Science Reviews, 1980, 32(4):56-61.
[55] Humphreys E, Clayton R W. Adaptation of Back Projection Tomography to Seismic Travel Time Problems[J]. Journal of Geophysical Research Solid Earth, 1988, 93(B2):1073-1085.
[56] Golub G H, Reinsch C. Singular Value Decomposi-tion and Least Squares Solutions[J]. Numerische Mathematik, 1970, 14(5):403-420.
[57] Scales J A. Tomographic Inversion via the Conjugate Gradient Method[J]. Geophysics,1987, 52(2):179.
[58] Paige C C, Saunders M A. LSQR:An Algorithm for Sparse Linear Equations and Sparse Least Squares[J]. ACM Transactions on Mathematical Software, 1982, 8(1):43-71.
[59] Saad Y, Schultz M H. GMRES:A Generalized Mi-nimal Residual Algorithm for Solving Nonsymmetric Linear Systems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(3):856-869.
[60] Sleijpen G L G, Fokkema D R. BiCGstab(ell) for Linear Equations Involving Unsymmetric Matrices with Complex Spectrum[J]. Electronic Transactions on Numerical Analysis Etna, 1993, 1(11):1160.
[61] Amoon C J, Vidale J E. Tomography Without Rays[J]. Bulletin of the Seismological Society of America, 1993, 83(2):509-528.
[62] Kirkpatrck S, Jr G C, Vecchi M P, et al. Optimi-zationby Simulated Annealing[J]. Science, 1983, 220:671-680.
[63] Liu J, Braile L. Two-Step MCMC Seismic Tomog-raphy[C]//AGU Fall Meeting. San Francisco:AGU, 2004.
[64] 赵昭,赵志新,徐纪人,等. 高精度人工地震波层析成像技术勘探地下构造[J]. 吉林大学学报(地球科学版),2011,41(增刊1):362-367. Zhao Zhao, Zhao Zhixin, Xu Jiren, et al. Surveying Structures with High-Resolution Seismic Tomography[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(Sup. 1):362-367.
[65] 崔岩,王彦飞. 基于初至波走时层析成像的Tikhonov正则化与梯度优化算法[J]. 地球物理学报,2015,58(4):1367-1377. Cui Yan, Wang Yanfei. Tikhonov Regularization and Gradient Descent Algorithms for Tomography Using First-Arrival Seismic Traveltimes[J]. Chinese Journal of Geophysics, 2015, 58(4):1367-1377.
[66] Pegah E, Liu H. Application of Near-Surface Seismic Refraction Tomography and Multichannel Analysis of Surface Waves for Geotechnical Site Characterizations:A Case Study[J]. Engineering Geology, 2016, 208:100-113.
[1] 卢燕红, 吴兆营, 丁广, 付琦, 张帆. 吉林前郭5.8级震区上地壳速度结构[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1894-1903.
[2] 康健, 韦庆海, 周琳, 高研, 张永刚, 高峰. 利用地震台阵观测资料研究大庆地区深部构造[J]. 吉林大学学报(地球科学版), 2016, 46(3): 900-910.
[3] 曲昕馨,李桐林,王飞. 基于数字图像分割法的跨孔雷达走时层析成像[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1340-1347.
[4] 朱自强,彭凌星,鲁光银,密士文. 基于互相关函数对钻孔雷达层析成像的改进[J]. 吉林大学学报(地球科学版), 2014, 44(2): 668-674.
[5] 冉利民, 刘四新, 李玉喜, 李健伟. 影响跨孔雷达层析成像效果的几个因素[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1672-1680.
[6] 冯晅, 迟唤昭, 刘财, 田有,柳云龙,郑确. 长白山及邻区地壳、上地幔顶部三维速度结构[J]. 吉林大学学报(地球科学版), 2013, 43(3): 983-996.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!