吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (6): 1788-1794.doi: 10.13278/j.cnki.jjuese.20180349

• 地球探测与信息技术 • 上一篇    下一篇

拓展的衍射CT技术反演多孔性海底声学参数

张培珍1, 莫秉戈1, 王斌2   

  1. 1. 广东海洋大学电子与信息工程学院, 广东 湛江 524088;
    2. 上海交通大学高新船舶与深海开发装备协同创新中心海洋工程国家重点实验室, 上海 200240
  • 收稿日期:2018-12-29 发布日期:2019-11-30
  • 作者简介:张培珍(1972-),女,副教授,主要从事水声信号处理研究,E-mail:zpzhen7242@163.com
  • 基金资助:
    国家自然科学基金项目(11774229);广东省教育科学规划课题(2017GXJK066)

Extended Diffraction CT Technique for Inversion of Acoustic Parameters of Porous Seabed

Zhang Peizhen1, Mo Bingge1, Wang Bin2   

  1. 1. College of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, Guangdong, China;
    2. State Key Laboratory of Ocean Engineering, Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2018-12-29 Published:2019-11-30
  • Supported by:
    Supported by National Natural Science Foundation of China (11774229) and Guangdong Province Educational Science Planning Project (2017GXJK066)

摘要: 多孔性海底沉积层的声速、密度、孔隙结构等声学参数是描述海底地质的重要信息,也是声场数值预报、沿岸工程建设地点选择等工程应用中所必须的参数。本文从海底后向半平面不完全投影的散射特性出发,拓展医学上的衍射CT技术,重新推导出收发分置测试系统目标散射强度和相关图像剖面频谱样本的关系式。运用随机生长四参数生成法构建声场图像模型,通过收发分置散射声场的有限稀疏样本,完成单一方向入射线性调频波条件下的剖面图像信息反演验证,得出影响声学参数精度的调频波频率间隔和测量方向数,进一步反演多孔性海底沉积层的孔隙度和平均阻抗指数。与基于网格剖分的数值计算方法相比,本文方法计算效率提高约两个数量级。

关键词: 拓展的衍射CT, 收发分置, 多孔性介质, 四参数生成法

Abstract: Acoustic parameters such as sound velocity, density, and porous structure of seafloor sediments are important for describing seabed, and are necessary for engineering application in sound field numerical prediction and coastal engineering. Based on the backscattering characteristics of the seabed, we extended the diffraction CT technique and re-deduced the relationship between the target scattering intensity and the relevant image spectral sample of the bistatic system. Quartet structure generation set is used to construct the image model of the sound field. When LFM wave is incident from a single direction, the image inversion is retrieved by using the finite sparse sample of the bistatic sound field. The frequency interval and direction number, which affect the acoustic parameter accuracy, are obtained. The porosity and mean impedance indices of sediments are further inversed. Compared with the classical numerical calculation method, the computational efficiency of this method is increased by about two orders of magnitude.

Key words: diffraction CT, bistatic system, porous sediments, quartet structure generation set (QSGS)

中图分类号: 

  • O427.2
[1] 陈勃, 赵梅, 胡长青, 等.射线理论下浅海声环境噪声声场空间相干性分析及海底声学参数反演[J]. 声学学报, 2018, 43(3):298-306. Chen Bo, Zhao Mei, Hu Changqing,et al. Analysis on Spatial Coherence of Ambient Noise and Geoacoustic Inversion in Shallow Water[J]. Acta Acustica, 2018, 43(3):298-306.
[2] 傅磊, 刘四新, 吴俊军, 等.频率域海底电磁法三维正演研究[J]. 吉林大学学报(地球科学版), 2010, 40(增刊1):67-69. Fu Lei, Liu Sixin, Wu Junjun, et al.Three Dimensional Forward Study of Electromagnetic Method in Frequency Domain[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(Sup.1):67-69.
[3] 李佳蔚, 鹿力成, 郭圣明, 等. Warping变换提取单模态反演海底衰减系数[J]. 物理学报, 2017, 66(20):204301. Li Jiawei, Lu Licheng, Guo Shengming,et al. Inversion of Seabed Attenuation by Using Single Mode Extracted by Warping Transform[J]. Acta Physica Sinica, 2017, 66(20):204301.
[4] 李梦竹, 李整林, 李倩倩. 南海北部负跃层环境下海底参数声学反演[J]. 声学学报, 2019, 44(3):321-328. Li Mengzhu, Li Zhenglin, Li Qianqian. Geoacoustic Inversion for Bottom Parameters in a Thermocline Environment in the Northern Area of the South China Sea[J]. Acta Acustica, 2019, 44(3):321-328.
[5] 倪然, 李红星, 谢青, 等. 基于Gassmann理论与遗传算法的海底沉积物物理参数声速反演方法[J]. 科学技术与工程, 2018, 18(6):223-228. Ni Ran, Li Hongxing, Xie Qing, et al. Acoustic Inversion Method for Parameters of Seafloor Sediment Based on Gassmann Theory and Genetic Algorithm[J]. Science Technology and Engineering, 2018, 18(6):223-228.
[6] 于盛齐, 黄益旺, 吴琼. 基于等效密度流体近似反射模型反演海底参数[J]. 声学学报, 2014, 39(4):417-427. Yu Shengqi, Huang Yiwang, Wu Qiong. Bottom Parameters Inversion Based on Reflection Model of Effective Density Fluid Approximation[J]. Acta Acustica, 2014, 39(4):417-427.
[7] Li Hongxing, Tao Chunhui, Liu Cai, et al. Acoustic Inversion Method for Parameters of Sediments Based on Adaptive Predatory Genetic Algorithm[J]. The Journal of the Acoustical Society of America, 2018, 143(1):141.
[8] 肖灵,张仁和,李风华,等.测量海底声学参数的匹配场反演方法[J]. 热带海洋学报, 2001, 20(4):20-27. Xiao Ling, Zhang Renhe, Li Fenghua,et al. A Matched-Field Inversion for Measuring Acoustic Sea-Bottom Properties[J]. Journal of Tropical Oceanography, 2001, 20(4):20-27.
[9] 徐东, 李风华, 郭永刚. 利用脉冲声反演深海海底声学参数[J].声学技术, 2016, 35(6):178-181. Xu Dong, Li Fenghua, Guo Yonggang. Geoacoustic Inversion in Deep Water by Using Pulse Signal[J]. Technical Acoustics, 2016, 35(6):178-181.
[10] 郭晓乐, 杨坤德, 马远良. 一种基于简正波模态频散的远距离宽带海底参数反演方法[J]. 物理学报, 2015, 64(17):174302. Guo Xiaole, Yang Kunde, Ma Yuanliang. A Far Distance Wideband Geoacoustic Parameter Inversion Method Based on a Modal Dispersion Curve[J]. Acta Physica Sinica, 2015, 64(17):174302.
[11] 屈科,胡长青,赵梅. 利用传播损失反演海底单参数[J].声学学报, 2013,38(4):472-476. Qu Ke, Hu Changqing, Zhao Mei. Single Parameter Inversion Using Transmission Loss in Shallow Water[J]. Acta Acoustic, 2013, 38(4):472-476.
[12] 鹿力成, 马力. 浅海海底反演实验研究[J]. 声学技术, 2008, 27(5):56-57. Lu Licheng, Ma Li. Geoacoustic Inversionsfrom Experiment Data in Shallow Water[J]. Technical Acoustics, 2008, 27(5):56-57.
[13] 苏晓星, 李风华, 简水生.浅海低频声场的水平纵向相关性[J]. 声学技术, 2007,26(4):579-583. Su Xiaoxing, Li Fenghua, Jian Shuisheng. Horizontal-Longnitudinal Correlations of Low-Frequency Acoustic Field in Shallow Water[J]. Technical Acoustics, 2007, 26(4):579-583.
[14] 赵建虎, 尚晓东, 张红梅. 侧扫声呐图像反演海底地形的一种线性算法[J]. 哈尔滨工业大学学报, 2017, 45(9):80-86. Zhao Jianhu, Shang Xiaodong, Zhang Hongmei. Obtaining High-Resolution Seafloor Topography from Side Scan Sonar Image Using a Linear Algorithm[J]. Journal of Harbin Institute of Technology, 2017, 45(9):80-86.
[15] Kak A C, Slaney M. Principles of Computerized Tomographic Imaging[M]. New York:Society of Industrial and Applied Mathematics, Ed, Philadelphia, 2001.
[16] Chu Dezhang, Tang Dajun, Austin T C, et al. Fine-Scale Acoustic Tomographic Imaging of Shallow Water Sediments[J]. IEEE Journal of Oceanic Engineering, 2001, 26(1):70-83.
[17] Zhang Peizhen, Wang Shuozhong, Wang Runtian. Reducing Frequency-Domain Artifacts of Binary Image Due to Coarse Sampling by Repeated Interpolation and Smoothing of Radon Projections[J]. Journal of Visual Communication and Image Representation, 2012, 23(5):697-704.
[18] Zhang Peizhen, Wang Shuozhong. Fast Prediction of Scattered Sound Field Based on Fourier Diffraction Theory Under Second-Order Born Approximation[J]. Acoustical Physics, 2014, 60(4):379-386.
[19] 李仁民, 刘松玉, 方磊, 等.采用随机生长四参数生成法构造黏土微观结构[J]. 浙江大学学报(工学版), 2010, 44(1):1897-1901. Li Renmin, Liu Songyu, Fang Lei, et al. Micro-Structure of Clay Generated by Quartet Structure Generation Set[J]. Journal of Zhejiang University (Engineering Science), 2010, 44(1):1897-1901.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵兴敏,花修艺,张菁菁,董德明,李 鱼. 自然水体采集的生物膜上铁、锰氧化物的萃取分离[J]. J4, 2005, 35(04): 505 -0509 .
[2] 柳雁玲,佴 磊,刘永平. 和龙沿江公路傍山隧道偏压特征分析[J]. J4, 2006, 36(02): 240 -0244 .
[3] 刘菁华,王祝文,刘树田,王晓丽. 城市活动断裂带的土壤氡、汞气评价方法[J]. J4, 2006, 36(02): 295 -0297 .
[4] 何朋朋,姚磊华,刘立鹏,陈庆. 地下水位随机性影响下的边坡可靠性分析[J]. J4, 2009, 39(2): 288 -0293 .
[5] 孙庆春, 孙晓猛, 王璞珺, 刘万洙, 金凤兰, 白雪峰. 松辽盆地东缘营城组节理构造特征、分布规律及其储层预测[J]. J4, 2007, 37(6): 1091 -1096 .
[6] 谢忠雷,陈卓,孙文田,尹波. 不同茶园茶叶氟含量及土壤氟的形态分布[J]. J4, 2008, 38(2): 293 -0298 .
[7] 郭媛媛,杜显元,刘 亮,花修艺,董德明. 溶液pH对自然水体中多种固相介质吸附铅、镉、铜影响的比较[J]. J4, 2008, 38(3): 479 -0483 .
[8] 卜 坤,张树文,杨久春,张宇博. 基于Delaunay三角网的Shapefile几何纠正算法与实现[J]. J4, 2008, 38(3): 521 -0526 .
[9] 叶栋成,慕山, 陶月赞. 地下水补给对河流水质模型的影响[J]. J4, 2008, 38(4): 644 -0648 .
[10] 彭新明,刘大军,柴尔慧,朱继东,孙友宏. 双作用水泵泡沫增压装置应用及前景分析[J]. J4, 2008, 38(4): 659 -0662 .