吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (6): 1795-1804.doi: 10.13278/j.cnki.jjuese.20180312
王明常1,2, 郭鑫1, 王凤艳1, 张馨月1
Wang Mingchang1,2, Guo Xin1, Wang Fengyan1, Zhang Xinyue1
摘要: 研究城乡土地利用变化规律与驱动机制,有利于实现区域土地资源可持续发展。本文以长春市为例,以监督分类与人工解译相结合的方式对1997、2007和2017年Landsat卫星影像进行分类,总体精度分别为93.06%,90.70%和94.12%。1997-2017年,草地、耕地和其他土地面积分别减少354.74、922.11和55.35 km2,建设用地、水域和林地面积分别增加1 154.14、70.38和107.54 km2,整体表现为建设用地向周边扩张,侵占其他用地类型面积。利用未来土地利用模拟(future land use simulation,FLUS)模型,以2007年分类数据为基础,结合地形、交通区位和社会经济等土地利用变化驱动因子,仿真2017年土地利用格局,仿真结果与真实情况吻合较好,仿真精度达85.10%,Kappa系数为0.821 2,验证了模型和驱动因子精度可靠,符合土地利用变化趋势。以此模型因子预测2027年土地利用格局,结果表明:在城镇周围,建设用地将持续侵占耕地、林地、草地和其他土地的面积,但趋势减缓,同时林地面积和水域面积增加。
中图分类号:
[1] 赵冬玲,杜萌,杨建宇,等.基于CA-Markov模型的土地利用演化模拟预测研究[J].农业机械学报, 2016, 47(3):278-285. Zhao Dongling, Du Meng, Yang Jianyu, et al. Simulation and Forecast Study of Land Use Change Based on CA-Markov Model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3):278-285. [2] Lu J, Guldmann J. Landscape Ecology, Land-Use Structure, and Population Density:Case Study of the Columbus Metropolitan Area[J]. Landscape and Urban Planning, 2012,105(1/2):74-85. [3] Clark M L, Aide T M, Riner G. Land Change for All Municipalities in Latin America and the Caribbean Assessed from 250 m MODIS Imagery (2001-2010)[J]. Remote Sensing of Environment, 2012, 126:84-103. [4] Lambin E F, Geist H J, Lepers E. Dynamics of Land-Use and Land-Cover Change in Tropical Regions[J]. Annual Review of Environment and Resources, 2003, 28:205-241. [5] Anil A P, Ramesh H. Analysis of Climate Trend and Effect of Land Use Land Cover Change on Harangi Stream-Flow, SouthIndia:A Case Study[J]. Sustainable Water Resources Management, 2017, 3(3):257-267. [6] 王明常,何月,许军强,等.基于GIS的长白山景观格局演化信息图谱分析[J]. 测绘科学, 2008, 33(6):33-35. Wang Mingchang, He Yue, Xu Junqiang, et al. Analysis on Geo-Info-Spectrum of Landscape Pattern Evolvement in Changbai Mountain Based on GIS[J]. Science of Surveying and Mapping, 2008, 33(6):33-35. [7] Mu J E, Sleeter B M, Abatzoglou J T, et al. Climate Impacts on Agricultural Land Use in the USA:The Role of Socio-Economic Scenarios[J]. Climatic Change, 2017, 144(2):329-345. [8] 崔敬涛.基于Logistic-CA-Markov模型的临沂市土地利用变化模拟预测研究[D].南京:南京大学,2014. Cui Jingtao. Simulation and Prediction of Land Use Change in Linyi City Based on Logistic-CA-Markov Model[D]. Nanjing:Nanjing University, 2014. [9] 王明常,牛雪峰,杨毅恒,等.长白山地区景观格局过程模拟预测研究[J].吉林大学学报(地球科学版),2009, 39(5):947-952. Wang Mingchang, Niu Xuefeng, Yang Yiheng, et al. Simulation and Predicted Research on Changbai Mountain Landscape Pattern Process[J]. Journal of Jilin University (Earth Science Edition), 2009, 39(5):947-952. [10] Verburg P H, Soepboer W, Veldkamp A, et al. Modeling the Spatial Dynamics of Regional Land Use:The CLUE-S Model[J]. Environmental Management, 2002, 30(3):391-405. [11] 黎夏,刘小平,何晋强,等.基于耦合的地理模拟优化系统[J].地理学报,2009,64(8):1009-1018. Li Xia, Liu Xiaoping, He Jinqiang, et al. A Geographical Simulation and Optimization System Based on Coupling Strategies[J]. Acta Geographica Sinica, 2009, 64(8):1009-1018. [12] Liu X P, Liang X, Li X, et al. A Future Land Use Simulation Model (FLUS) for Simulating Multiple Land Use Scenarios by Coupling Human and Natural Effects[J]. Landscape and Urban Planning, 2017, 168:94-116. [13] 王秀兰.土地利用/土地覆盖变化中的人口因素分析[J].资源科学,2000,22(3):39-42. Wang Xiulan. Analysis on Demographic Factors and Land Use/Land Cover Change[J]. Resources Science, 2000, 22(3):39-42. [14] 孟祥萍,王圣镔,王欣欣.基于蚁群算法和轮盘算法的多AgentQ学习[J].计算机工程与应用,2009,45(16):60-62. Meng Xiangping, Wang Shengbin, Wang Xinxin. Multiagent Q-Learning Based on Ant Colony Algorithm and Roulette Algorithm[J]. Computer Engineering and Applications, 2009,45(16):60-62. [15] 骆剑承,周成虎,杨艳.人工神经网络遥感影像分类模型及其与知识集成方法研究[J].遥感学报,2001,5(2):122-129. Luo Jiancheng, Zhou Chenghu, Yang Yan. ANN Remote Sensing Classification Model and Its Integration Approach with Geo-Knowledge[J]. Journal of Remote Sensing, 2001, 5(2):122-129. [16] 范晓锋.基于ANN-CA模型的珲春市土地利用格局模拟研究[D].长春:吉林大学,2016. Fan Xiaofeng. The Simulation Study of the Land Use Pattern of Hunchun City Based on the Model ANN-CA[D].Changchun:Jilin University, 2016. [17] 张宝光.人工神经网络在遥感数字图像分类处理中的应用[J].国土资源遥感,1998(1):23-29. Zhang Baoguang. The Application of Artificial Neural Network to Classification Processing of Remote Sensing Digital Images[J]. Remote Sensing for Land & Resources, 1998(1):23-29. [18] 朱光明.长春市土地利用结构变化及优化研究[D].长春:东北师范大学,2012. Zhu Guangming. Research on Land Use Structure Change and Optimization in Changchun[D]. Changchun:Northeast Normal University, 2012. [19] 王雪微,王士君,宋飏,等.长春市城市建设用地演进的空间识别及影响机制研究[J].地理科学,2015,35(7):873-881. Wang Xuewei, Wang Shijun, Song Yang, et al. Space Recognition and Influence Mechanism of Urban Construction[J].Scientia Geographica Sinica, 2015, 35(7):873-881. [20] 赵永超.天津市土地利用动态变化及预测分析[D].北京:中国地质大学(北京),2017. Zhao Yongchao. Land Use Dynamic Change and Forecast Analysis in Tianjin[D]. Beijing:China University of Geosciences(Beijing), 2017. |
[1] | 刘雁, 刘吉平, 盛连喜. 吉林省西部湿地土地利用格局变化的多情景模拟[J]. 吉林大学学报(地球科学版), 2016, 46(3): 865-875. |
[2] | 王楠, 曹剑峰, 赵继昌, 李书光. 长春市区浅层地温能开发利用方式适宜性分区评价[J]. J4, 2012, 42(4): 1139-1144. |
[3] | 邢宇, 姜琦刚, 王坤, 王耿明, 杨佳佳. 20世纪70年代以来东北三省湿地动态变化[J]. J4, 2011, 41(2): 600-608. |
[4] | 刘艳秋, 郭立夫, 姜锡东, 李波, 滕大力, 张志龙. 长春高新区土地利用总体规划对区域环境容量的影响[J]. J4, 2010, 40(3): 678-682. |
[5] | 姜玲玲,熊德琪,张新宇,张弘. 大连滨海湿地景观格局变化及其驱动机制[J]. J4, 2008, 38(4): 670-0675. |
[6] | 杨忠平,卢文喜,辛欣,李俊,李平. 长春市城市土壤铅同位素组成特征及其来源解析[J]. J4, 2008, 37(4): 663-0669. |
[7] | 崔 健,林年丰,汤 洁,姜玲玲,蔡 宇. 霍林河流域下游地区土地利用变化动态及趋势预测[J]. J4, 2006, 36(02): 259-0264. |
[8] | 李昭阳,汤 洁,孙平安,林年丰. 松嫩平原西南部土地利用动态变化的分形研究[J]. J4, 2006, 36(02): 250-0258. |
[9] | 方燕娜,廖资生,陈洪艳,董维红. 吉林中部平原区地下水温动态变化影响因素的关联度分析[J]. J4, 2006, 36(01): 66-0072. |
[10] | 杜 崇,林年丰,汤 洁,李昭阳. 吉林西部平原土地利用动态变化的RS-GIS集成研究[J]. J4, 2005, 35(03): 366-0372. |
|