吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (6): 1805-1814.doi: 10.13278/j.cnki.jjuese.20180346
• 地球探测与信息技术 • 上一篇
黄盖先, 田波, 周云轩, 袁庆
Huang Gaixian, Tian Bo, Zhou Yunxuan, Yuan Qing
摘要: 连续在线滨海湿地生态物联网观测系统,因传感器技术局限及环境干扰会产生异常观测数据,影响数据使用,有效的数据预处理极为重要。以上海崇明东滩国际重要湿地生态观测数据为研究对象,将异常数据分为数值异常、波动异常与异常事件3种类型,基于回归残差概率分布异常检测算法,使用查找表和多指标时间序列模型,综合多环境要素相互关系,构建针对滨海湿地生态观测的数据预处理方法。相比传统方法,该方法在保证异常数据检测精度的同时,更好地区分了异常事件与传感器异常,减少误判。通过分析9个指标5万余条数据,以10-8~10-20的阈值分别检测出0.18%~8.12%的数值异常和波动异常,以及2次异常事件。分析数据预处理结果,传感器的观测原理、观测季节等因素会影响传感器的稳定性,人类活动是造成观测区异常事件发生的主要因素。
中图分类号:
[1] Costanza R,d'Arge R, de Groot R, et al. The Value of the World's Ecosystem Services and Natural Capital[J]. Nature, 1997, 387:253-260. [2] 宋庆丰,牛香,王兵,等. 基于大数据的森林生态系统服务功能评估进展[J]. 生态学杂志,2015,34(10):2914-2921. Song Qingfeng, Niu Xiang, Wang Bing, et al. Review on Forest Ecosystem Services Assessment Based on Big Data[J]. Chinese Journal of Ecology, 2015, 34(10):2914-2921. [3] 崔洪亮,于淼,常天英,等. 应用于海洋环境和海洋工程的光纤传感技术[J]. 吉林大学学报(地球科学版),2017,47(1):279-293. Cui Hongliang, Yu Miao, Chang Tianying, et al. Fiber Optic Sensing Technology for Applications in Marine Environment and Marine Engineering[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(1):279-293. [4] Fiebrich C A, Morgan C R, Mccombs A G, et al. Quality Assurance Procedures for Mesoscale Meteorological Data[J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(10):1565-1582. [5] Byer D, Carlson K H. Real-Time Detection of Intentional Chemical Contamination in the Distribution System[J]. Journal American Water Works Association, 2005, 97(7):130-133. [6] Wu H, Tang X, Wang Z, et al. Probabilistic Automatic Outlier Detection for Surface Air Quality Measurements from the China National Environmental Monitoring Network[J]. Advances in Atmospheric Sciences, 2018, 35(12):1522-1532. [7] 魏媛,冯天恒,黄平捷,等. 管网水质多指标动态关联异常检测方法[J]. 浙江大学学报(工学版),2016,50(7):1402-1409. Wei Yuan, Feng Tianheng, Huang Pingjie, et al. Contamination Event Detection Method Based on Dynamic Correlation Analyis of Multiple Water Quality Parameters[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(7):1402-1409. [8] Breunig M M, Kriegel H P, Ng R T, et al. LOF:Identifying Density-Based Local Outliers[C]//Acm Sigmod International Conference on Management of Data. Dallas:ACM, 2000:93-104. [9] Billor N, Hadi A S, Velleman P F. BACON:Blocked Adaptive Computationally Efficient Outlier Nominators[J]. Computational Statistics & Data Analysis, 2000, 34(3):279-298. [10] Hochenbaum J, Vallis O S, Kejariwal A. Automatic Anomaly Detection in the Cloud via Statistical Learning[J/OL]. arXiv Preprint. (2017-04-24). http://arxiv.org/abs/1704.07706. [11] Babin S M, Burkom H S, Mnatsakanyan Z R, et al. Drinking Water Security and Public Health Disease Outbreak Surveillance[J]. Johns Hopkins Apl Technical Digest, 2008, 27(4):403-411. [12] Modaresi F, Araghinejad S. A Comparative Assessment of Support Vector Machines, Probabilistic Neural Networks, and K-Nearest Neighbor Algorithms for Water Quality Classification[J]. Water Resources Management, 2014, 28(12):4095-4111. [13] Zhang Y, Meratnia N, Havinga P J M. Outlier Detection Techniques for Wireless Sensor Networks:A Survey[J]. IEEE Communications Surveys and Tutorials, 2010, 12(2):159-170. [14] 地表水环境质量标准:GB 3838-2002[S]. 北京:国家环境保护总局,国家质量监督检验检疫总局,2002. Environmental Quality Standards for Surface Water:GB 3838-2002[S]. Beijing:State of Environmental Protection Agency, General Administration of Quality Supervision, Inspection and Quarantine, 2002. [15] Feng S, Hu Q, Qian W. Quality Control of Daily Meteorological Data in China, 1951-2000:A New Dataset[J]. International Journal of Climatology, 2004, 24(7):853-870. [16] Baty F, Ritz C, Charles S, et al. A Toolbox for Nonlinear Regression in R:The Package Nlstools[J]. Journal of Statistical Software, 2015, 66(5):1-21. [17] Dunn R J H, Willett K M, Thorne P W, et al. HadISD:A Quality-Controlled Global Synoptic Report Database for Selected Variables at Long-Term Stations from 1973-2011[J]. Climate of the Past, 2012, 8(5):1649-1679. [18] 海水水质标准:GB 3097-1997[S]. 北京:国家环境保护局,1997. Sea Water Quality Standard:GB 3097-1997[S]. Beijing:National Environmental Protection Agency, 1997. [19] 翟世奎,张怀静,范德江,等. 长江口及其邻近海域悬浮物浓度和浊度的对应关系[J]. 环境科学学报,2005,25(5):693-699. Zhai Shikui, Zhang Huaijing, Fan Dejiang, et al. Corresponding Relationship Between Suspended Matter Concentration and Turbidity on Changjiang Estuary and Adjacent Sea Area[J]. Acta Scientiae Circumstantiae, 2005, 25(5):693-699. [20] 李修竹,苏荣国,张传松,等. 基于支持向量机的长江口及其邻近海域叶绿素-a浓度预测模型[J]. 中国海洋大学学报(自然科学版),2019,49(1):69-76. Li Xiuzhu, Su Rongguo, Zhang Chuansong, et al. A Chl-a Prediction Model Based on Support Vector Machine in Yangtze River Estuaries and Its Adjacent Sea Area[J]. Periodical of Ocean University of China, 2019, 49(1):69-76. [21] 王佳鹏,施润和,张超,等. 基于光谱分析的长江口湿地互花米草叶片叶绿素含量反演研究[J]. 遥感技术与应用,2017,32(6):1056-1063. Wang Jiapeng, Shi Runhe, Zhang Chao, et al. Study on the Inversion of Chlorophyll Content of Spartina Alterniflora Leaf in the Yangtze River Estuary Wetland Based on Spectral Analysis[J]. Remote Sensing Technology and Application, 2017, 32(6):1056-1063. [22] 谢明媚,孙德勇,丘仲锋,等. 长江口水质MERIS卫星数据遥感反演研究[J]. 广西科学,2016,23(6):520-527. Xie Mingmei, Sun Deyong, Qiu Zhongfeng, el at. Water Quality Retrievals from MERIS Satellite Data in Yangtze Estuary[J]. Guangxi Sciences, 2016, 23(6):520-527. [23] 崔莉凤,黄振芳,刘载文,等. 水华暴发叶绿素-a与表征指标溶解氧和pH的关系[J]. 给水排水,2008,44(增刊1):177-178. Cui Lifeng, Huang Zhenfang, Liu Zaiwen, et al. Relationship Between Chlorophyll-a and Characteristic Indicators of Dissolved Oxygen and pH in Blooms[J]. Water & Wastewater Engineering, 2008, 44(Sup. 1):177-178. |
No related articles found! |
|