吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (2): 355-366.doi: 10.13278/j.cnki.jjuese.20200037

• 地质与资源 • 上一篇    

斜坡区断层圈闭发育部位及其形成时期识别方法及应用——以冀中坳陷文安斜坡为例

刘峻桥1,2,3, 吕延防1, 付广1, 胡欣蕾1, 史集建1, 孙同文2,3   

  1. 1. 东北石油大学地球科学学院, 黑龙江 大庆 163318;
    2. 广东石油化工学院石油工程学院, 广东 茂名 525000;
    3. 广东石油化工学院广东省非常规能源工程技术研究中心, 广东 茂名 525000
  • 收稿日期:2020-02-21 发布日期:2021-04-06
  • 通讯作者: 吕延防(1957-),男,教授,博士生导师,主要从事油气保存条件、油气成藏和油气资源评价研究,E-mail:lyf571128@nepu.edu.cn E-mail:lyf571128@nepu.edu.cn
  • 作者简介:刘峻桥(1989-),男,讲师,博士,主要从事油气藏形成与保存条件研究,E-mail:smartqiao_2013@163.com
  • 基金资助:
    国家自然科学基金项目(41872153,41702153);广东石油化工学院2018年科研基金项目人才引进类(2018rc06);广东省非常规能源工程技术研究中心开放基金(GF2018A007);广东省普通高校青年创新人才类项目(2018KQNCX159)

Recognition Method and Application of Fault Trap Position and Formation Period in Slope Area: A Case Study in Wen'an Slope, Jizhong Depression

Liu Junqiao1,2,3, Lü Yanfang1, Fu Guang1, Hu Xinlei1, Shi Jijian1, Sun Tongwen2,3   

  1. 1. College of Earth Science, Northeast Petroleum University, Daqing 163318, Heilongjiang, China;
    2. College of Petroleum Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China;
    3. Guangdong Research Center for Unconventional Energy Engineering Technology, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
  • Received:2020-02-21 Published:2021-04-06
  • Supported by:
    Supported by the National Natural Science Fund(41872153,41702153), Talent Introduction Fund of Guangdong University of Petrochemical Technology in 2018(2018rc06),Guangdong Research Center for Unconventional Energy Engineering Technology Open Fund(GF2018A007) and Young Innovative Talents Project of Guangdong Universities(2018KQNCX159)

摘要: 断层圈闭是斜坡区重要的构造圈闭类型,为了识别斜坡区断层圈闭发育部位及其形成时期,基于断层生长机制,分析斜坡区顺向断层圈闭和反向断层圈闭形成演化过程。结果表明:顺向断层圈闭形成于断层"硬连接"阶段,发育在断层下降盘分段生长部位;反向断层圈闭形成于断层开始活动时期,发育在断层上升盘位移最大部位。在此基础上,充分利用详细三维地震资料,结合断距-距离曲线、相干体切片、断层分段生长时期定量表征以及断距回剥等技术,建立了斜坡区断层圈闭发育部位及形成时期的识别方法,并将该方法应用于冀中坳陷文安斜坡典型断层圈闭发育部位及形成时期的识别,研究结果与实际油气分布吻合关系较好。

关键词: 顺向断层圈闭, 反向断层圈闭, 发育部位, 形成时期, 识别方法, 冀中坳陷

Abstract: Fault trap is an important type of structures in a slope area. To identify the location and formation period of fault traps, the authors analyzed the formation and evolution process of the consequent and antithetic fault traps in the slope area on the basis of considering the formation and evolution of faults. The result suggested that the consequent fault traps were formed in the "hard-linkage" stage and developed at the segmented growth sites of the hanging wall of the fault; while the antithetic fault traps were formed at the beginning of the fault activity and developed at the site with the largest displacement of the footwall of the fault. On this basis, a method was established to identify the fault trap location and formation period combined fully with the technology of throw-distance curve, coherent slice, the quantitative representation of the fault segment growth stage, and the throw back-stripping using detailed 3D seismic data. This method was applied to identify the fault trap location and formation period in the Wen'an slope of Jizhong depression, and the result is in accord with the actual hydrocarbon distribution.

Key words: consequent fault trap, antithetic fault trap, transverse anticline, forming period, recognition method, Jizhong depression

中图分类号: 

  • P618.13
[1] Sorkhabi R, Tsuji Y. The Place of Faults in Petroleum Traps[J]. AAPG Memoir, 2005(85):1-31.
[2] 赵贤正,金凤鸣,王权,等.断陷斜坡油气藏形成分布与精细勘探[M].北京:科学出版社,2012:1-17. Zhao Xianzheng, Jin Fengming, Wang Quan, et al. Formation Distribution and Meticulous Prospecting of Hydrocarbon Reservoir in Rift Slope[M]. Beijing:Science Press, 2012:1-17.
[3] Ferrill D A, Morris A P, Stamatakos J A, et al. Crossing Conjugate Normal Faults[J]. AAPG Bulletin, 2000, 84(10):1543-1559.
[4] 罗群,庞雄奇.海南福山凹陷顺向和反向断裂控藏机理及油气聚集模式[J].石油学报,2008,29(3):363-367. Luo Qun, Pang Xiongqi. Reservoir Controlling Mechanism and Petroleum Accumulation Model for Consequent Fault and Antithetic Fault in Fushan Depression of Hainan Area[J]. Acta Petrolei Sinica, 2008, 29(3):363-367.
[5] 马德龙,何登发,魏东涛,等.准噶尔盆地南缘古牧地背斜多期构造变形特征[J].吉林大学学报(地球科学版),2017,47(6):1695-1704. Ma Delong, He Dengfa, Wei Dongtao, et al. Multiple Phase Deformation of Gumudi Anticline at South Margin of Junggar Basin[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(6):1695-1704.
[6] 刘培,张向涛,林鹤鸣,等. 珠江口盆地西江主洼油气差异分布机制[J]. 吉林大学学报(地球科学版),2021,51(1):52-64. Liu Pei, Zhang Xiangtao, Lin Heming, et al. Distribution Mechanism of Oil and Gas in Xijiang Main Depression of Pearl River Mouth Basin[J]. Journal of Jilin University(Earth Science Edition), 2021, 51(1):52-64.
[7] 姜大朋,何敏,张向涛,等. 箕状断陷控洼断裂上下盘油气成藏差异性及勘探实践:以南海北部珠江口盆地惠州凹陷X洼为例[J]. 吉林大学学报(地球科学版),2019,49(2):346-355. Jiang Dapeng, He Min, Zhang Xiangtao, et al. Difference of Hydrocarbon Accumulation Between Hanging and Foot Wall of Half Graben Boundary Fault and Exploration Practice:A Case Study of X Sag in Huizhou Depression, Pearl River Mouth Basin, Northern South China Sea[J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2):346-355.
[8] 刘峻桥,吕延防,付广,等.正断层输导油气运移模式及其对油气分布的控制作用[J].吉林大学学报(地球科学版),2016,46(6):1-14. Liu Junqiao, Lü Yanfang, Fu Guang, et al. Transporting Models of Oil-Gas Migration by Normal Fault and Its Controlling Effect to Oil-Gas Distribution[J]. Journal of Jilin University(Earth Science Edition), 2016, 46(6):1-14.
[9] Childs C, Manzocchi T, Walsh J J, et al. A Geometric Model of Fault Zone and Fault Rock Thickness Variations[J]. Journal of Structural Geology, 2009, 31(2):117-127.
[10] 李明刚,漆家福,童亨茂,等.辽河西部凹陷新生代断裂构造特征与油气成藏[J].石油勘探与开发,2010,37(3):281-288. Li Minggang, Qi Jiafu, Tong Hengmao, et al. Cenozoic Fault Structure and Hydrocarbon Accumulation in Western Sag, Liaohe Depression[J]. Petroleum Exploration and Development, 2010, 37(3):281-288.
[11] 李火车,刘秋生,王亚红,等.斜坡油气勘探[J].石油地球物理勘探,2001,36(5):602-610. Li Huoche, Liu Qiusheng, Wang Yahong, et al. Oil and Gas Exploration in Slope[J]. Oil Geophysical Prospecting, 2001, 36(5):602-610.
[12] 付晓飞,王朋岩,申家年,等.简单斜坡油气富集规律:以松辽盆地西部斜坡北段为例[J].地质论评,2006,52(4):522-531. Fu Xiaofei, Wang Pengyan, Shen Jianian, et al. Migration and Accumulation of Oil and Gas in a Simple Slope Area:A Case Study on the Western Slope of the Northern Songliao Basin[J]. Geological Review, 2006, 52(4):522-531.
[13] Walsh J J, Watterson J. Geometric and Kinematic Coherence and Scale Effects in Normal Fault Systems[J]. Geometry of Normal Faults, 1991, 56(1):193-203.
[14] Rippon J H. Countoured Patterns of Throw and Shade of Normal Faults in the Coal Measures(Westphalian) of North-East Derbyshire[J]. Proceedings of the Yorkshire Geological Society, 1985, 45:147-161.
[15] Schlische R W. Geometry and Origin of Fault-Related Folds in Extensional Setting[J]. AAPG Bulletin, 1995,79(11):1661-1678.
[16] 王海学,吕延防,付晓飞,等.裂陷盆地转换带形成演化及其控藏机理[J].地质科技情报,2013,32(4):102-110. Wang Haixue, Lü Yanfang, Fu Xiaofei, et al. The Formation, Evolution and Reservoir-Controlling Mechanism of Relay Zone in Rift Basin[J]. Geological Science and Technology Information, 2013, 32(4):102-110.
[17] Peacock D C P. Propagation, Interaction and Linkage in Normal Fault Systems[J]. Earth-Science Reviews, 2002, 58(1/2):121-142.
[18] 张军龙,蒙启安,张长厚,等.松辽盆地徐家围子断陷边界断裂生长过程的定量分析[J].地学前缘,2009,16(4):87-96. Zhang Junlong, Meng Qi'an, Zhang Changhou, et al. A Quantitative Study on the Growth of Boundary Faults of the Xujiaweizi Faulting Depression in the Songliao Basin[J]. Earth Science Frontiers, 2009, 16(4):87-96.
[19] Peacock D C P, Sanderson D J. Geometry and Development of Relay Ramps in Normal Fault Systems[J]. The American Association of Petroleum Geologist Bulletin, 1994, 78(2):147-165.
[20] Giba M, Walsh J J, Nicol A. Segmentation and Growth of an Obliquely Reactivated Normal Fault[J]. Journal of Structural Geology, 2012, 39(3):253-267.
[21] An L. Maxinum Link Distance Between Strike-Slip Faults:Observations and Constraints[J]. Pure and Applied Geophysics, 1997, 150(1):19-36.
[22] Acocella V, Gudmundsson A, Funiciello R. Interaction and Linkage of Extension Fractures and Normal Faults:Examples from Rift Zone of Iceland[J]. Journal of Structural Geology, 2000, 22(9):1233-1246.
[23] Soliva R, Benedicto A. A Linkage Criterion for Segmented Normal Faults[J]. Journal of Structural Geology, 2004, 26(12):2251-2267.
[24] Acocella V, Morvillo P, Funiciello R. What Controls Relay Ramps and Transfer Faults Within Rift Zones? Insights from Analogue Models[J]. Journal of Structural Geology, 2005, 27(3):397-408.
[25] Hus R, Acocellab V, Funiciellob R, et al. Sandbox Models of Relay Ramp Structure and Evolution[J]. Journal of Structural Geology, 2005, 27(3):459-473.
[26] Soliva R, Benedicto A, Schultz R A, et al. Displacement and Interaction of Normal Fault Segments Branched at Depth:Implications for Fault Growth and Potential Earthquake Rupture Size[J]. Journal of Structural Geology, 2008, 30(10):1288-1299.
[27] 王海学,李明辉,沈忠山,等.断层分段生长定量判别标准的建立及其地质意义:以松辽盆地杏北开发区萨尔图油层为例[J].地质论评,2014,60(6):1259-1264. Wang Haixue, Li Minghui, Shen Zhongshan, et al. The Establishment and Geological Significance of Quantitative Discrimination Criterion of Fault Segmentation Growth:An Example from Saertu Reservoir in Xingbei Development Area of Songliao Basin[J]. Geological Review, 2014, 60(6):1259-1264.
[28] 万桂梅,汤良杰,金文正,等.库车坳陷西部构造圈闭形成期与烃源岩生烃期匹配关系探讨[J].地质学报,2007,81(2):187-196. Wan Guimei, Tang Liangjie, Jin Wenzheng, et al. Control of Salt-Related Tectonics on Oil and Gas Accumulation in the Western Kuqa Depression[J]. Acta Geologica Sinica, 2007, 81(2):187-196.
[29] Chapman T J, Meneilly A W. The Displacement Patterns Associated with a Reverse-Reactivated, Normal Growth Fault[J]. Geological Society, 1991, 56(1):183-191.
[30] Childs C, Easton S J, Vendeville B C, et al. Kinematic Analysis of Faults in a Physical Model of Growth Faulting Above a Viscous Salt Analogue[J]. Tectonophysics, 1993, 228(3):313-329.
[31] Rowan M G, Hart B S, Nelson S, et al. Three-Dimensional Geometry and Evolution of a Salt-Related Growth-Fault Array:Eugene Island 330 Field, Offshore Louisiana, Gulf of Mexico[J]. Marine and Petroleum Geology, 1998, 17:309-328.
[32] David M D, Bruced D T. Four-Dimensional Analysis of the Sembo Relay System, Offshore Angola:Implications for Fault Growth in Salt-Detached Settings[J]. AAPG Bulletin, 2009, 93(6):763-794.
[33] Walsh J J, Watterson J. Analysis of the Relationship Between Displacements and Dimensions of Faults[J]. Journal of Structural Geology, 1988, 10(3):239-247.
[34] Cowie P A, Scholz C H. Displacement-Length Scaling Relationship for Faults:Data Synthesis and Discussion[J]. Journal of Structural Geology, 1992, 14:1149-1156.
[35] Kim Y S, Sanderson D J. The Relation Between Displacement and Length of Faults:A Review[J]. Earth-Science Review, 2005, 68:317-334.
[36] 张万福,李晓恒,翟宪兰,等.霸县凹陷文安斜坡构造特征及勘探潜力分析[J].石油地球物理勘探,2012,47(增刊1):118-124. Zhang Wanfu, Li Xiaoheng, Zhai Xianlan, et al. Structure Features and Potential Prospect of Wen'an Slope in Baxian Depression[J]. Oil Geophysical Prospecting, 2012, 47(Sup.1):118-124.
[37] 刘华,蒋有录,徐昊清,等.冀中坳陷新近系油气成藏机理与成藏模式[J].石油学报,2011,32(6):928-936. Liu Hua, Jiang Youlu, Xu Haoqing, et al. Accumulation Mechanisms and Modes of Neogene Hydrocarbons in Jizhong Depression[J]. Acta Petrolei Sinica, 2011, 32(6):928-936.
[38] 赵贤正,金凤鸣,王权,等.断陷盆地富油凹陷二次勘探工程[M].北京:石油工业出版社,2016:213-275. Zhao Xianzheng, Jin Fengming, Wang Quan, et al. The Secondary Exploration Engineering of Oil-Rich Sag in Graben Basin[D]. Beijing:Petroleum Industry Press, 2016:213-275.
[1] 安玉科, 樊江, 马胜午, 马建全, 高娟, 毛立军. 堆积阶地古老滑坡识别方法及其在线状工程地质勘察中的应用[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1787-1794.
[2] 钱铮, 张松航, 梁宏斌, 唐书恒, 杨宁. 冀中坳陷东北部石炭—二叠系烃源岩生烃潜力评价[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1332-1341.
[3] 赖锦,王贵文,陈阳阳,黄龙兴,张莉莉,王迪,孙艳慧,李梅. 川中蓬莱地区须家河组须二段储层成岩相与优质储集层预测[J]. 吉林大学学报(地球科学版), 2014, 44(2): 432-445.
[4] 郭顺, 王震亮, 张小莉, 孙佩. 陕北志丹油田樊川区长61低阻油层成因分析与识别方法[J]. J4, 2012, 42(1): 18-24.
[5] 付广,庚琪. 气藏天然气聚集速率计算方法的改进--以我国41个大中型气田为例[J]. J4, 2009, 39(2): 183-0189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!