吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (5): 1570-1577.doi: 10.13278/j.cnki.jjuese.20200275

• 绿色岩土工程 • 上一篇    下一篇

基于FAST-1新型高强快速锚固剂的筋-浆-岩黏结性试验

刘泉维1, 黄成1, 刘林胜1, 叶守杰1, 臧国强2, 高文龙3, 张瑾4   

  1. 1. 青岛市地铁六号线有限公司, 山东 青岛 266100;
    2. 山东旭瑞环境岩土工程勘察设计有限公司, 山东 青岛 266100;
    3. 上海勘察设计研究院(集团)有限公司青岛分公司, 山东 青岛 266100;
    4. 青岛理工大学土木工程学院, 山东 青岛 266033
  • 收稿日期:2020-11-26 出版日期:2021-09-26 发布日期:2021-09-29
  • 通讯作者: 高文龙(1992-),男,硕士,主要从事工程地质方面的研究,E-mail:919763892@qq.com E-mail:919763892@qq.com
  • 作者简介:刘泉维(1977-),男,博士,主要从事城市地铁规划建设与安全质量管理方面的研究,E-mail:59134856@qq.com
  • 基金资助:
    国家自然科学基金青年基金项目(41702320)

Reinforcement-Mud-Rock Bonding Test Based on FAST-1 New High Strength Anchoring Agent

Liu Quanwei1, Huang Cheng1, Liu Linsheng1, Ye Shoujie1, Zang Guoqiang2, Gao Wenlong3, Zhang Jin4   

  1. 1. Qingdao Metro Line 6 Co. Ltd., Qingdao 266100, Shandong, China;
    2. Shandong Xurui Environmental Geotechnical Engineering Investigation and Design Co. Ltd., Qingdao 266100, Shandong, China;
    3. Qingdao Branch, SGIDI Engineering Consulting(Group) Co. Ltd., Qingdao 266100, Shandong, China;
    4. School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, China
  • Received:2020-11-26 Online:2021-09-26 Published:2021-09-29
  • Supported by:
    Supported by the Youth Fund of National Natural Science Foundation of China (41702320)

摘要: 为了研究FAST-1新型高强快速锚固剂的锚固性能及最佳锚固长度,通过连续荷载作用下的极限拉拔试验,从多个方面研究了基于FAST-1新型锚固剂的筋-浆-岩体系的黏结性能。研究发现:该新型锚固剂具有早期强度高的特点,24 h即可达到设计强度;其水料比在一定范围内(0.22~0.31)会影响拉拔过程中锚固结构的破坏模式,水料比越小,黏结强度越大,但流动性也越差;锚固剂对岩层的黏结性能大于锚索,增加锚索与浆液固结体的接触面积可有效提高锚固性能。笔者选用拟合效果较好的连续曲线模型求取相对滑移,有效反映不同界面的黏结性能;优选有效的筋-浆长度计算方法,得出锚固长度与锚体长度相关,建议锚固长度取值10.0d~15.0dd为锚索直径)。

关键词: 锚固剂, 黏结强度, 黏结位移, 锚固长度

Abstract: In order to study the anchoring performance and optimal anchoring length of the FAST-1 new high strength anchoring agent, the bonding performance of the reinforced slurry rock system based on the FAST-1 new high strength anchoring agent was studied from many aspects through the ultimate pull-out test under continuous load. The continuous curve model with good fitting effect was selected to calculate the relative slip, which can effectively reflect the bonding properties of different interfaces, and the effective calculation method of reinforcement slurry length was optimized. It is found that when the water material ratio is in a certain range (0.22-0.31), and it affectes the failure mode of the anchor structure in the drawing process. The smaller the water material ratio, the greater the bond strength, but the worse the fluidity; The bonding performance of the anchoring agent to the rock stratum is greater than that of the anchor cable; Increasing the contact area between the anchor cable and the slurry consolidation body can effectively improve the anchoring performance. It is concluded that the new anchoring agent has the characteristics of high early strength, and the design strength can be reached with 24 h; The anchorage length is related to the length of the anchor body. It is suggested that the anchorage length is 10.0d-15.0d(d is the diameter of the anchor cable).

Key words: anchoring agent, bonding strength, bonding displacement, anchorage length

中图分类号: 

  • U455
[1] 孙超, 许成杰. 基坑开挖对周边环境的影响[J]. 吉林大学学报(地球科学版), 2019, 49(6):1698-1705. Sun Chao, Xu Chengjie. Influence of Excavation of a Deep Excavation on the Surrounding Environment[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(6):1698-1705.
[2] 郎秋玲, 王伟, 高成梁. 基于组合权重与灰色关联度分析法的地铁深基坑开挖稳定性评价[J]. 吉林大学学报(地球科学版), 2020, 50(6):1823-1832. Lang Qiuling, Wang Wei, Gao Chengliang. Stability Evaluation of Deep Foundation Pit of Metro Based on Grey Correlation Analysis with Combined Weights[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(6):1823-1832.
[3] 刘少伟, 王伟, 付孟雄, 等.螺纹钢锚杆搅拌锚固剂力学特征分析与端部形态优化实验[J]. 中国矿业大学学报, 2020, 49(3):419-427. Liu Shaowei, Wang Wei, Fu Mengxiong, et al. Mechanical Characteristics Analysis and End Shape Optimization Experiment of Stirring Anchoring Agent for Rebar Bolts[J]. Journal of China University of Mining and Technology, 2020, 49(3):419-427.
[4] 白俊杰, 薛小龙.锚索现场张拉预紧力损失试验研究[J]. 煤炭科技, 2020, 41(3):50-51, 63. Bai Junjie, Xue Xiaolong. Experimental Study on Loss of Anchor Cable Pretension in Situ[J]. Coal Science and Technology, 2020, 41(3):50-51, 63.
[5] 王大强, 刘晓丽, 汪辉, 等. 纤维筋与高强纤维混凝土的黏结性能[J]. 低温建筑技术, 2011(6):14-16. Wang Daqiang, Liu Xiaoli, Wang Hui, et al. Bond Performance Between Fiber Reinforced Concrete and High-Strength Fiber Reinforced Concrete[J]. Cryogenic Building Technology, 2011(6):14-16.
[6] 刘鸣, 宋建平, 刘军, 等. 膨胀土水泥改性施工均匀性试验研究[J]. 岩土工程学报, 2017, 39(增刊1):59-63. Liu Ming, Song Jianping, Liu Jun, et al. Experimental Study on Construction Uniformity of Expansive Soil Cement Modification[J]. Journal of Geotechnical Engineering, 2017, 39(Sup.1):59-63.
[7] 梁新民, 张永达, 胡光球, 等.全长锚固预应力树脂锚杆受力特性分析及应用[J]. 黄金, 2015, 36(4):38-42. Liang Xinmin, Zhang Yongda, Hu Guangqiu, et al. Analysis and Application of Stress Characteristics of Full-Length Anchored Prestressed Resin Bolt[J]. Gold, 2015, 36(4):38-42.
[8] 吴爱祥, 李莉, 王贻明, 等.快慢凝预应力树脂锚杆与围岩相互作用的力学特征[J]. 北京科技大学学报, 2012, 34(4):363-367. Wu Aixiang, Li Li, Wang Yiming, et al. Mechanical Characteristics of the Interaction Between Fast and Slow Solidifying Pre-Stressed Resin Bolt and Surrounding Rock[J]. Journal of University of Science and Technology Beijing, 2012, 34(4):363-367.
[9] 陈梅.浅谈树脂锚固剂生产工艺及技术改造[J]. 科技创新导报, 2019, 16(12):111-112. Chen Mei. Discussion on Production Process and Technical Transformation of Resin Anchorage Agent[J]. Science and Technology Innovation Guide, 2019, 16(12):111-112.
[10] Ganesh R. Vertical Uplift Resistance of Close-Spaced Shallow Rectangular Group Anchor Plates Embedded in Sand[J]. Marine Georesources & Geotechnology, 2020, 38(9):1070-1081.
[11] Anamitra R, Paramita B. Diameter Effect on Uplift Capacity of Horizontal Circular Anchor Embedded in Sand[J]. International Journal of Geotechnical Engineering, 2020, 14(7):779-792.
[12] 崔棚, 戴梦希, 丁铸, 等.磷酸镁水泥砂浆与混凝土的锚固黏结性能研究[J]. 中国建材科技, 2020, 29(2):19-23. Cui Peng, Dai Mengxi, Ding Zhu, et al. Research on Anchorage Bond Performance of Magnesium Phosphate Cement Mortar and Concrete[J]. China Building Materials Science and Technology, 2020, 29(2):19-23.
[13] 青岛理工大学. 高强快速锚固剂及其浆液的制备方法, ZL201810739147.0[P]. 2019-12-17. Qingdao University of Technology. High-Strength Fast Anchoring Agent and Preparation Method of Its Slurry, ZL201810739147.0[P]. 2019-12-17.
[14] 高丹盈, 朱海堂, 谢晶晶.纤维增强塑料筋混凝土黏结滑移本构模型[J]. 工业建筑, 2003, 33(7):41-43, 82. Gao Danying, Zhu Haitang, Xie Jingjing. Bond Slip Constitutive Model of Fiber Reinforced Plastic Reinforced Concrete[J]. Industrial Construction, 2003, 33(7):41-43, 82.
[15] 混凝土结构设计规范:GB 50010-2010[S].北京:中国建筑工业出版社, 2012. Code for Design of Concrete Structures:GB 50010-2010[S]. Beijing:China Construction Industry Press, 2012.
[16] Building Code Requirements for Structural Concrete and Commentary:ACI 318M-05[S].[S.l.]:American Concrete Institute, 2004.
[17] 钢筋套筒灌浆连接应用技术规程:JGJ 355-2015[S]. 北京:中国建筑工业出版社, 2012. Technical Specification for Application of Reinforced Sleeve Grouting Connection:JGJ 355-2015[S]. Beijing:China Construction Industry Press, 2012.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[2] 王谦,吴志芳, 张汉泉,莫修文. 随机分形在刻划储层非均质特性中的应用[J]. J4, 2005, 35(03): 340 -0345 .
[3] 杨晓平,李仰春,柳 震, 汪 岩,王洪杰. 黑龙江东部鸡西盆地构造层序划分与盆地动力学演化[J]. J4, 2005, 35(05): 616 -621 .
[4] 薛永超, 程林松, 付 广. 大庆长垣以东地区登二段泥质岩盖层封气能力综合评价[J]. J4, 2005, 35(05): 626 -631 .
[5] 刘菁华,王祝文,刘树田,王晓丽. 城市活动断裂带的土壤氡、汞气评价方法[J]. J4, 2006, 36(02): 295 -0297 .
[6] 刘祥. 长白山火山历史上最大火山爆发火山碎屑物层序与分布[J]. J4, 2006, 36(03): 313 -318 .
[7] 郑坤,刘修国,吴信才,杨慧. 顾及拓扑面向实体的三维矢量数据模型[J]. J4, 2006, 36(03): 474 -479 .
[8] 尹 潘,胡光道. 基于GDW的空间数据融合[J]. J4, 2006, 36(03): 486 -490 .
[9] 孔庆莹,程日辉,胡艳飞. 周口坳陷谭庄-沈丘凹陷早白垩世沉积相类型和层序地层特征[J]. J4, 2006, 36(04): 557 -562 .
[10] 迟宝明,易树平,李治军,周彦章. 大连地区水资源人工调控研究[J]. J4, 2005, 35(05): 632 -635 .