吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (5): 1578-1586.doi: 10.13278/j.cnki.jjuese.20200283
潘维强1, 张黎明2, 丛宇2
Pan Weiqiang1, Zhang Liming2, Cong Yu2
摘要: 为了解决深厚松散地层预防性治理后竖井井筒缺乏破坏判据问题,用数值极限应变方法分析井筒应变值的变化情况,将井筒中达到极限应变值的单元环向贯通,计算不收敛作为井筒整体破坏判别标准。分别建立了带卸压槽和无卸压槽井筒的数值计算模型,得出地下水水位下降诱发的井筒和周围岩土体的极限应变值。结果表明,井筒周围砂土层先于井筒在181~183 m发生破坏:若地下水水位下降27 m,无泄压槽井筒在181~182 m发生破坏;若地下水水位下降38 m,带卸压槽井筒在182~183 m发生破坏。目前地下水水位下降为20 m,井筒处于安全状态。数值计算卸压槽压缩量与实际监测值一致。
中图分类号:
[1] 陈湘生. 华东地区立井井壁破坏原因浅析[J]. 建井技术, 1997, 18(6):1-3. Chen Xiangsheng. Analysis on the Causes of Shaft Wall Destruction in East China[J]. Mine Construction Technology, 1997, 18(6):1-3. [2] 吕恒林, 崔广心. 深厚表土层中井壁结构破坏的力学机理[J]. 中国矿业大学学报, 1999, 28(6):539-543. Lü Henling, Cui Guangxin. Mechanical Mechanism of Shaft Wall Structure Failure in Deep Topsoil[J]. Journal of China University of Mining and Technology, 1999, 28(6):539-543. [3] 张黎明, 杨建华, 张广学, 等. 深厚表土层井筒破坏预防性治理技术[J]. 煤炭科学科技, 2008, 36(4):46-49. Zhang Liming, Yang Jianhua, Zhang Guangxue, et al. Preventive Control Technology for Mine Shaft Damage in Deep Overburden[J]. Coal Science and Technology, 2008, 36(4):46-49. [4] 毕思文. 徐淮地区煤矿竖井变形破坏特征与机理探讨[J]. 建井技术, 1997, 18(3):37-39. Bi Siwen. Discussion on Deformation and Failure Characteristics and Mechanism of Coal Mine Shaft in Xuhuai Area[J]. Mine Construction Technology, 1997, 18(3):37-39. [5] 许延春, 耿得庸, 官云章, 等. 深厚含水松散层的工程特性及其在矿区的应用[M]. 北京:煤炭工业出版社, 2003. Xu Yanchun, Geng Deyong, Guan Yunzhang, et al. Engineering Characteristics of Deep Water-Bearing Loose Layer and Its Application in Mining Area[M]. Beijing:Coal Industry Press, 2003. [6] 杨维好, 李峰, 王宗胜, 等. 冲积层疏排水与注浆过程中井壁应变变化规律实测研究[J]. 岩石力学与工程学报, 2007, 26(1):2713-2717. Yang Weihao, Li Feng, Wang Zongsheng, et al. Field Measurements for Strains in Shaft Lining in Alluvium During Drainage and Grouting[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(1):2713-2717. [7] 经来旺, 张天勇, 徐辉东, 等. 矿区表土疏水沉降机理及其与井壁破裂的关系[J]. 煤田地质与勘探, 2003, 33(3):61-64. Jing Laiwang, Zhang Tianyong, Xu Huidong, et al. Relation Between the Seepage Sedimentation Mechanism of Soil in Mining Area and Shaft Rupture[J]. Coal Geology & Exploration, 2003, 33(3):61-64. [8] 李文平. 深部土层失水变形时土与井壁相互作用试验与理论研究[J]. 岩土工程学报, 2000, 22(4):475-480. Li Wenping. Testing and Theoretical Studies on the Interaction Between Soil and Shaft Wall During Deep Soil Compression Due to Losing Water[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(4):475-480. [9] 彭向和, 杨春和. 复杂加载史下混凝土的损伤及其描述[J]. 岩石力学与工程学报, 2000, 19(2):157-164. Peng Xianghe, Yang Chunhe. The Damage and Its Description of Concrete Under Complex Loading History[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(2):157-164. [10] 张楠, 程桦, 荣传新, 等. 冻结井高强混凝土损伤演化与渗透性关系[J]. 硅酸盐学报, 2018, 46(10):1366-1372. Zhang Nan, Cheng Hua, Rong Chuanxin, et al. Relation Between Damage Evolution and Permeability of High-Strength Concrete of Freezing Shaft Lining[J]. Journal of the Chinese Ceramic Society, 2018, 46(10):1366-1372. [11] 荣传新, 王秀喜, 蔡海兵, 等. 基于流固耦合理论的煤矿立井井壁突水机理分析[J]. 煤炭学报, 2011, 36(12):1366-1372. Rong Chuanxin, Wang Xiuxi, Cai Haibing, et al. Analysis of Shaft Water Irruption Mechanismin Coal Mine Based on Fluid-Solid Coupling Theory[J]. Journal of China Coal Society, 2011, 36(12):1366-1372. [12] 吴月秀, 刘滨, 远洋, 等. 复杂荷载作用下冻结凿井井壁损伤应力分析[J]. 金属矿山, 2010(8):42-45, 78. Wu Yuexiu, Liu Bin, Yuan Yang, et al. Stress Analysis on Freeze Sinking Sidewall's Damage Under Complicated Load[J]. Mental Mine, 2010(8):42-45, 78. [13] 许良发. 深厚表土冻结井壁结构破裂机理及修复技术研究[J]. 煤炭技术, 2016, 35(12):98-101. Xu Liangfa. Fracture Mechanism and Remediation Technology of Frozen Shaft Lining in Thick Top Soil[J]. Coal Technology, 2016, 35(12):98-101. [14] 王英杰, 赵光思, 董国庆. 立井井壁破裂前后应变演化分析[J]. 煤炭工程, 2013, 45(4):74-76. Wang Yingjie, Zhao Guangsi, Dong Guoqing. Analysis on Stress Evolution Before and After Mine Shaft Liner Broken[J]. Coal Engineering, 2013, 45(4):74-76. [15] 葛晓光. 地面与破壁注浆治理井壁破裂灾害的工程分析[J]. 煤炭学报, 2002, 27(1):41-44. Ge Xiaoguang. Engineering Properties of Two Grouting Techniques in Mending Shaft-Lining[J]. Journal of China Coal Society, 2002, 27(1):41-44. [16] 琚宜文, 刘宏伟, 王桂梁, 等. 卸压套壁法加固井壁的力学机理与工程应用[J]. 岩石力学与工程学报, 2003, 22(5):773-777. Ju Yiwen, Liu Hongwei, Wang Guiliang, et al. Mechanical Mechanism of Reinforcing Shaft-Wall with Pressure Release and Casing-Wall Method and Its Engineering Application[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(5):773-777. [17] 郑颖人. 岩土数值极限分析方法的发展与应用[J]. 岩石力学与工程学报, 2012, 31(7):1297-1316. Zheng Yingren. Development and Application of Numerical Limit Analysis for Materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7):1297-1316. [18] 郑颖人, 孔亮. 岩土塑性力学[M]. 北京:中国建筑工业出版社, 2010. Zheng Yingren, Kong Liang. Geotechnical Plastic Mechanics[M]. Beijing:China Construction Press, 2010. [19] 阿比尔的, 冯夏庭, 郑颖人. 岩土类材料应变分析与基于极限应变判据的极限分析[J]. 岩石力学与工程学报, 2015, 34(8):1552-1560. Abi Erdi, Feng Xiating, Zheng Yingren, et al. Strain Analysis and Numerical Analysis Based on Limit Strain for Geomaterials[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(8):1552-1560. [20] 丛宇, 孔亮, 郑颖人, 等. 混凝土材料剪切强度的试验研究[J]. 混凝土, 2015, 34(5):40-45. Cong Yu, Kongliang, Zheng Yingren, et al. Experimental Study on Shear Strength of Concrete[J]. Concrete, 2015, 34(5):40-45. [21] 混凝土结构设计规范:GB 50010-2010[S]. 北京:中国建筑工业出版社, 2011. Design Code for Concrete Structures:GB 50010-2010[S]. Beijing:China Industry Publishing House, 2011. |
[1] | 王新民, 崔巍. 变权组合预测模型在地下水水位预测中的应用[J]. J4, 2009, 39(6): 1101-1105. |
|