吉林大学学报(地球科学版) ›› 2022, Vol. 52 ›› Issue (1): 214-.

• 地质工程与环境工程 • 上一篇    下一篇

基于VMD和LSTM方法的北京市PM2.5短期预测

  

  1. 1.长春工业大学数学与统计学院,长春130012
    2.长春工业大学研究生院,长春130012
    3.长春财经学院信息工程学院,长春130122
  • 收稿日期:2020-07-21 出版日期:2022-01-27 发布日期:2022-03-02
  • 通讯作者: 王新民(1957—),男,教授,博士生导师,主要从事大数据分析方面的研究,Email: wxm@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(11301036);吉林省教育厅科研项目(JJKH20170540KJ)

Short-Term Prediction of PM2.5 in Beijing Based on VMDLSTM Method

  1. 1. School of Mathematics and Statistics, Changchun University of Technology, Changchun 130012, China
    2. Graduate School, Changchun University of Technology, Changchun 130012, China
    3. College of Information Engineering, Changchun University of Finance and Economics, Changchun 130122, China

  • Received:2020-07-21 Online:2022-01-27 Published:2022-03-02
  • Supported by:
    Supported by the National Natural Science Foundation of China (11301036) and the Scientific Research Project of Jilin Province Department of Education (JJKH20170540KJ)

摘要: 雾霾问题是与社会发展息息相关的热点问题,为了进行PM2.5浓度预测,为有效防治雾霾提供依据,本文提出了改进的VMD(变分模态分解)和LSTM(长短时记忆)神经网络相结合的PM2.5预测模型VMDLSTM。首先利用阈值法确定VMD方法的分解数目,将历史数据分解成不同序列,然后对每个序列进行预测,最后将每个序列的预测结果求和得到最终的预测结果。将VMDLSTM模型应用到北京市PM2.5序列的短期预测中,并利用7种评价指标将其与ARIMA(整合移动平均自回归)、RFR(随机森林回归)、LSSVR(最小二乘支持向量回归)、LSTM等9种模型进行比较。结果表明,在其中的5个误差评价指标中,VMDLSTM模型表现最优,仅有1个误差指标评价位列第二,在协议指数评价中,VMDLSTM模型最接近于1,精度最高。其中:VMDLSTM模型的均方误差为41.10,均方根误差为6.42,平均绝对误差为5.79,协议指数为0.97;而RFR、VMDLSSVR 、ARIMA和LSTM等9种模型的均方误差范围为60.72~1 058.07,均方根误差范围为7.79~32.53,平均绝对误差范围为7.45~26.14,协议指数为0.39~0.95。相比于其他模型,本文提出的VMDLSTM模型精度最高。

关键词: VMD, LSTM神经网络, 阈值法, PM2.5, 短期预测

Abstract:  Haze is a hot issue closely related to social development. In order to predict PM2.5 concentration and provide basis for its effective prevention and control,  the PM2.5 prediction model VMDLSTM is proposed based on the combination of the improved VMD (variational modal decomposition) and LSTM (long and shortterm memory) neural network. Firstly, the threshold method is used to determine the decomposition number of VMD method, then the historical data is decomposed into different sequences, further each sequence is predicted, and the final prediction result is obtained by summing the prediction results of each sequence. The VMDLSTM model is applied to the shortterm prediction of PM2.5 series in Beijing, and its result is compared with nine models such as ARIMA (autoregressive integrated moving average), RFR (random forest regression),LSSVR(least squares support vector regression), LSTM and so on,  by using seven evaluation indexes. The comparison results show that among the five error evaluation indexes, the VMDLSTM model performs best,  with only one error index ranking second. In the protocol index evaluation, the VMDLSTM model is closest to 1 and has the highest accuracy; The mean square error of VMDLSTM model is 41.10, the root mean square error is 6.42, the mean absolute error is 5.79, and the protocol index is 0.97. The mean square error range of RFR,VMDLSSVR,ARIMA,SVR,and LSTM models is from 60.72 to 1 058.07, the root mean square error range is from 7.79 to 32.53, the mean absolute error range is from 7.45 to 26.14, and the protocol index range is from 0.39 to 0.95. The VMDLSTM model proposed in this paper has the highest accuracy.

Key words:  , VMD, LSTM neural network, threshold value method, PM2.5, shortterm prediction

中图分类号: 

  • X513
[1] 王德利, 党丹, 刘伟明, 张亚红. CFP技术层间多次波预测及Curvelet域相减方法[J]. J4, 2011, 41(3): 907-914.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[3] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[4] 孟元林,高建军,刘德来,牛嘉玉,孙洪斌,周玥,肖丽华,王粤川. 辽河坳陷鸳鸯沟地区成岩相分析与异常高孔带预测[J]. J4, 2006, 36(02): 227 -0233 .
[5] 曾昭发,吴燕冈,郝立波,王者江,黄 航. 基于泊松定理的重磁异常分析方法及应用[J]. J4, 2006, 36(02): 279 -0283 .
[6] 常秋玲,卢欣祥,刘东华,李明立. 东秦岭五朵山花岗岩体及金矿关系探讨[J]. J4, 2006, 36(03): 319 -325 .
[7] 马艳梅,崔启良,周强,黄伟军,刘冶,彭刚,邹广田. 橄榄石原位高温拉曼光谱研究[J]. J4, 2006, 36(03): 342 -345 .
[8] 郝琦,刘震,查明,李春霞. 辽河茨榆坨潜山太古界裂缝型储层特征及其控制因素[J]. J4, 2006, 36(03): 384 -390 .
[9] 曾道明,纪宏金,陈 满,胡大千,朱永正. 胶东山城金矿地质与地球化学变量的关系[J]. J4, 2006, 36(04): 511 -515 .
[10] 赵宏光,孙景贵,陈军强,赵俊康,姚凤良,段 展. 延边小西南岔富金斑岩铜矿床的含矿流体起源与演化——H,O,C,S,Pb同位素示踪[J]. J4, 2005, 35(05): 601 -606 .