吉林大学学报(地球科学版) ›› 2022, Vol. 52 ›› Issue (2): 517-525.doi: 10.13278/j.cnki.jjuese.20200220

• 地质工程与环境工程 • 上一篇    下一篇

顺层岩质边坡溃屈变形机制及失稳判定方法

吴朋宇,张志红,戴福初,姚爱军   

  1. 城市与工程安全减灾教育部重点实验室(北京工业大学),北京100124
  • 收稿日期:2020-10-09 出版日期:2022-03-27 发布日期:2022-11-22
  • 基金资助:
    国家重点研发计划项目(2018YFC1505001)

Buckling Deformation Mechanism and Instability Judgment Method of Bedding Rock Slope#br#

Wu Pengyu, Zhang Zhihong, Dai Fuchu, Yao Aijun   

  1. Key Laboratory of Urban Security and Disaster Engineering (Beijing University of Technology),Ministry of Education, 
    Beijing 100124, China
  • Received:2020-10-09 Online:2022-03-27 Published:2022-11-22
  • Supported by:
    the National Key R&D Program of China (2018YFC1505001)

摘要: 溃屈型破坏是一种常见的顺层岩质边坡破坏模式,溃屈变形发展机制及失稳破坏的定量研究对滑坡工程勘查和防治指导十分重要。本文根据边坡的地质环境和力学作用机制,建立了三维受压板简化模型,其能够考虑岩层自身重力、地震力、静水压力的共同作用和岩体材料塑性变形的影响。基于弹塑性受压板稳定理论,利用能量法推导得到了边坡溃屈变形破坏的临界方程。对于溃屈型边坡的结构失稳和滑动失稳分别提出了相应的稳定性判定方法,并针对不同状态的边坡提出了相应的防治措施建议。以四川省甘孜藏族自治州巴塘县下归哇边坡为例,对所提判定方法的正确性进行了验证。计算结果表明,边坡的临界溃屈长度(a1)为483.8 m,说明下归哇边坡能够发生溃屈变形;现场勘查得知边坡实际溃屈长度(a′)为530.0 m,a′>a1,可知边坡是稳定的。这与实际情况相吻合,由此证明本文所提出的判定方法可行。

关键词: 溃屈破坏, 弹塑性板理论, 临界方程, 判定方法

Abstract: Buckling landslide is a common failure mode of bedding rock slopes. It is very important to carry out quantitative research on the development mechanism and instability failure of buckling deformation for engineering exploration and prevention of landslides. According to the geological environment and mechanical mechanism of slopes, a simplified model of a three-dimensional compression plate is established in this paper. Combined with gravity, seismic force, hydrostatic pressure, and plastic deformation of the rock material, based on the stability theory of elastic-plastic compression plates, a critical equation of buckling deformation and failure of slopes is derived by using the energy equilibrium theory. For the structural instability and sliding instability of the buckling slope, the corresponding stability judgment methods are put forward. The corresponding prevention measures are proposed for the slopes of different status. Taking Xiaguiwa slope in Batang area in Sichuan Province as an example, the correctness of the proposed method is verified. The calculation results show that the critical buckling length (a1) of the slope is 483.8 m, indicating that the buckling deformation of Xiaguiwa slope may occur. The field investigation shows that the actual buckling length (a′) of the slope is 530.0 m, and a′ is greater than a1. According to the quantitative relationship between a′and a1, the slope is stable. This result is consistent with the actual situation, which proves the feasibility of the proposed judgment method.

Key words: buckling failure, elastic-plastic plate theory, critical equation, judgment method

中图分类号: 

  • TU457
[1] 于清杨, 刘伟, 佴磊, 代树林. 偏压隧道偏压应力比特征分析[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1797-1803.
[2] 赵天宇, 张虎元, 严耿升, 李锦. 河西寒旱区盐渍土地层温湿度变化模式[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1466-1474.
[3] 王羽,许强,柴贺军,刘丽,夏毓超,王晓东. 工程岩爆灾害判别的RBF-AR耦合模型[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1943-1949.
[4] 李明, 李广杰, 张文, 刘慧明, 王吉亮, 杨静. 基于卡方检验法对长白山龙门峰裂隙岩体统计均质区划分[J]. J4, 2012, 42(2): 449-453.
[5] 肖云华,王 清,陈剑平,邱道宏. 隧道围岩超欠挖与节理和洞轴线之间的关系[J]. J4, 2008, 38(3): 455-0459.
[6] 邱道宏,陈剑平,阙金声,安鹏程. 基于粗糙集和人工神经网络的洞室岩体质量评价[J]. J4, 2008, 38(1): 86-0091.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[3] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[4] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[8] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[9] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[10] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .