吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (1): 142-155.doi: 10.13278/j.cnki.jjuese.201501112

• 地质与资源 • 上一篇    下一篇

新疆西南天山阿万达金矿床成矿流体演化

丁清峰1, 付宇1, 吴昌志2, 董莲慧3, 屈迅3, 曹长胜3, 夏明毅3, 孙洪涛4   

  1. 1. 吉林大学地球科学学院, 长春 130061;
    2. 内生金属矿床成矿机制研究国家重点实验室/南京大学地球科学与工程学院, 南京 210046;
    3. 新疆维吾尔自治区地质矿产勘查开发局, 乌鲁木齐 830000;
    4. 有色金属华东地质勘查局, 南京 210007
  • 收稿日期:2014-03-16 发布日期:2015-01-26
  • 作者简介:丁清峰(1976), 男, 副教授, 博士, 主要从事矿床学研究和教学工作, E-mail:dingqf@jlu.edu.cn
  • 基金资助:

    中国地质调查局工作项目(1212011140056);国家自然科学基金项目(40802021)

Evolution of the Ore-Forming Fluid of the Awanda Gold Deposit in Southwestern Tianshan Orogenic Belt, Xinjiang

Ding Qingfeng1, Fu Yu1, Wu Changzhi2, Dong Lianhui3, Qu Xun3, Cao Changsheng3, Xia Mingyi3, Sun Hongtao4   

  1. 1. College of Earth Sciences, Jilin University, Changchun 130061, China;
    2. State Key Laboratory for Mineral Deposits Research/School of Earth Sciences and Engineering, Nanjing University, Nanjing 210046, China;
    3. Xinjiang Bureau of Geology and Mineral Resources, Urumqi 830000, China;
    4. East China Mineral Exploration and Development Bureau, Nanjing 210007, China
  • Received:2014-03-16 Published:2015-01-26

摘要:

阿万达金矿位于新疆阿克苏市拜城县, 属西南天山造山带, 是一新发现的中型金矿床。在简要总结矿床地质特征的基础上, 通过流体包裹体显微测温和毒砂地温计研究, 详尽地探讨了阿万达金矿成矿流体的演化。研究表明:矿化石英中存在含CO2的三相和气液两相两类包裹体, 且以后者居多;气液两相包裹体均一温度为188~380℃, 呈双峰式分布, 盐度(w(NaCl))为6.9%~20.7%;含CO2包裹体的最终均一温度为238~347℃, 盐度为2.8%~7.0%。综合分析认为, 阿万达金矿成矿流体经历了由高温向中低温两个成矿阶段的演化过程。高温阶段, 成矿流体均一温度为270~380℃, 捕获温度为345~420℃, 估算的捕获压力为74~142 MPa(按静岩压力估算成矿深度为2.8~5.4 km), 以中低盐度H2O-CO2-NaCl体系为主, 形成高温毒砂及其他硫化物;中低温阶段, 均一温度为188~270℃, 捕获温度为270~304℃, 捕获压力为52~104 MPa, 成矿流体成分向中低盐度H2O-NaCl体系转变, 沉淀出低温毒砂及其他硫化物。综合阿万达金矿的矿床地质特征以及流体演化特点, 认为其成因类型属中浅成造山型金矿。

关键词: 新疆西南天山造山带, 阿万达金矿, 流体包裹体, 毒砂地温计, 造山型金矿床

Abstract:

The Awanda gold deposit, a recently defined medium-size gold deposit in Baicheng County, Xinjiang, is located in the southwestern Tianshan orogenic belt. The gold mineralization occurs primarily within subsidiary faults in ore-hosting schist rocks. The sulfide mineral assemblage is dominated by arsenopyrite, pyrrhotite, loellingite, with minor pyrite and gudmundite;and the sulfide mineral contents in the gold ore are less than 15%. The wall-rock alteration in the deposit includes silicification, sericitization and minor carbonatization. Combining microthermometric analyses of fluid inclusions and the arsenopyrite geothermometer, authors discuss the evolution of the ore-forming fluids of this deposit. It was shown that fluid inclusions in quartz grains from the ore consist of major two-phase aqueous inclusions and minor three-phase CO2-bearing ones. The two-phase aqueous inclusions have a bimodal-distributed homogenization temperatures of 188-380℃ and salinities of 6.9%-20.7%NaCl, while the CO2-bearing inclusions have the homogenization temperatures of 238-347℃ and salinities of 2.8%-7.0%NaCl. The arsenopyrite geothermometer shows that the sulfide assemblage of arsenopyrite+pyrrhotite+loellingite in Awanda gold deposit formed in a high-temperature condition ranging from 345℃ to 420℃, and there are some low-temperature arsenopyrites that can not to be applied by the arsenopyrite geothermometer. It can be synthesized that the ore-forming fluid experienced from the high-temperature epoch to the low-intermediate-temperature one. In the high-temperature epoch, the ore-forming fluid are characterized by the high homogenization temperatures of 270-380℃, the trapping temperatures of 345-420℃ from arsenopyrite geothermometer and the calculated trapping pressures of 74-142 MPa (the metallogenic depths of 2.8-5.4 km evaluated by lithostatic pressure system), and the ore-forming fluid belonged to a low-intermediate-salinity H2O-CO2-NaCl system and depositing high-temperature arsenopyrites and other sulfides. In the low-intermediate-temperature epoch, the ore-forming fluid are characterized by the low-intermediate homogenization temperatures of 188-270℃, the trapping temperatures less than 304℃ but larger than 270℃, and the calculated trapping pressures lower than 104 MPa but higher than 52 MPa, and the ore-forming fluid belonged to a low-intermediate-salinity H2O-NaCl system and forming low-temperature arsenopyrites and other sulfides. According to the geological characteristics and the evolution of the ore-forming fluid of the Awanda gold deposit, it can be conclued that the deposit belongs to the epizonal-mesozonal orogenic gold deposit.

Key words: Southwestern Tianshan orogenic belt in Xinjiang, Awanda gold deposit, fluid inclusion, arsenopyrite geothermometer, orogenic gold deposit

中图分类号: 

  • P618.51

[1] 叶庆同. 我国南天山造山带矿床成矿系列和成矿规律[J]. 矿床地质, 1998, 17(增刊):37-40. Ye Qingtong. Metallogenic Series and Metallogenic Regularity of Southwestern Tianshan Orogenic Belt in China[J]. Mineral Deposits, 1998, 17(Sup.):37-40.

[2] 杨建国, 闫晔轶, 徐学义, 等. 西南天山成矿规律及其与境外对比研究[J]. 矿床地质, 2004, 23(1):20-30. Yang Jianguo, Yan Yeyi, Xu Xueyi, et al. Metallogenic Regularity of Southwest Tianshan Mountains in Comparison with Neighboring Countries[J]. Mineral Deposits, 2004, 23(1):20-30.

[3] Wilde A R, Layer P, Mernagh T, et al. The Giant Muruntau Gold Deposit:Geologic, Geochronologic, and Fluid Inclusion Constraints on Ore Genesis[J]. Economic Geology, 2001, 96:633-644.

[4] Yakubchuk A, Cole A, Seltmann R, et al. Tectonic Setting, Characteristics and Regional Exploration Criteria for Gold Mineralization in the Altaid Orogenic Collage:The Tien Shan Province as a Key Example[J]. Society of Economic Geologists, Special Publication, 2002, 9:177-201.

[5] Seltmann R, Jenchuraeva R. Paleozoic Geodynamics and Gold Deposits in the Kyrgyz Tien Shan[M]. London:Natural History Museum, 2001.

[6] Mao J W, Konopelko D, Seltmann R, et al. Post-Collisional Age of the Kumtor Gold Deposit and Timing of Hercynian Events in the Tien Shan, Kyrgyzstan[J]. Economic Geology, 2004, 99:1771-1780.

[7] 杨富全.西南天山金矿成矿条件及成矿机制[D]. 北京:中国地质科学院, 2005. Yang Fuquan. The Metallogenic Environments and Metallogenic Mechanism of Gold Deposit in Southwestern Tianshan Mountains[D]. Beijing:Chinese Academy of Geological Sciences, 2005.

[8] Liu J J, Zheng M H, Cook N J, et al. Geological and Geochemical Characteristics of the Sawaya'erdun Gold Deposit, Southwestern Chinese Tianshan[J]. Ore Geology Reviews, 2007, 32:125-156.

[9] Chen H Y, Chen Y J, Baker M. Isotopic Geochemistry of the Sawayaerdun Orogenic-Type Gold Deposit, Tianshan, Northwest China:Implications for Ore Genesis and Mineral Exploration[J]. Chemical Geology, 2012, 310:1-11.

[10] 鲍庆中, 王宏, 沙德铭, 等. 新疆和静县大山口金矿床成矿流体地球化学特征研究[J]. 西北地质, 2003, 36(2):43-49. Bao Qingzhong, Wang Hong, Sha Deming, et al. Study on the Geochemical Characteristics of Ore-Forming Fluid Inclusion of Dashankou Gold Deposit in Xinjiang[J]. Northwestern Geology, 2003, 36(2):43-49.

[11] 郑明华, 张寿庭, 刘家军, 等.西南天山穆龙套型金矿床产出地质背景与成矿机制[M]. 北京:地质出版社, 2001. Zheng Minghua, Zhang Shouting, Liu Jiajun, et al.Geological Settings and Metallogenic Mechanism of Muruntau-Type Gold Deposits in Southwestern Tianshan Mountains[M]. Beijing:Geological Pubblish House, 2001.

[12] 杨富全, 毛景文, 王义天, 等.新疆西南天山金矿床主要类型、特征及成矿作用[J]. 矿床地质, 2007, 26(4):361-379. Yang Fuquan, Mao Jingwen, Wang Yitian, et al.Major Types, Characteristics and Metallogeneses of Gold Deposits in Southwest Tianshan Mountains, Xinjiang[J]. Mineral Deposits, 2007, 26(4):361-379.

[13] 陈富文, 李华芹. 新疆萨瓦亚尔顿金锑矿床成矿作用同位素地质年代学[J]. 地球学报, 2003, 24(6):563-567. Chen Fuwen, Li Huaqin. Metallogenic Chronology of the Sawayaerdun Gold-Antimony Deposit in Xinjiang[J]. Acta Geoscientica Sinica, 2003, 24(6):563-567.

[14] 郑明华, 刘家军, 张寿庭, 等.萨瓦亚尔顿金矿床的同位素组成特征及其成因意义[J]. 成都理工学院学报, 2002, 29(3):237-245. Zheng Minghua, Liu Jiajun, Zhang Shouting, et al. Isotopic Compostion and Genetic Indication of Sawaya Erdun Gold Deposit, Xinjiang[J]. Journal of Chengdu University of Technology, 2002, 29(3):237-245.

[15] 杨富全, 毛景文, 王义天, 等.新疆萨瓦亚尔顿金矿床年代学、氦氩碳氧同位素特征及其地质意义[J]. 地质论评, 2006, 52(3):341-351. Yang Fuquan, Mao Jingwen, Wang Yitian, et al. Chronology and Geochemical Characteristics of Helium, Argon, Carbon and Oxygen Isotope in Fluid Inclusion of the Sawayaerdun Gold Deposit, Xinjiang, Northwestern China and Their Significance[J]. Geological Review, 2006, 52(3):341-351.

[16] 杨富全, 王义天, 毛景文, 等.新疆阿合奇县布隆石英重晶石脉型金矿地质特征和硫、氦、氩同位素研究[J]. 地质论评, 2004, 31(1):87-98. Yang Fuquan, Wang Yitian, Mao Jingwen, et al.Geological Features and S, He and Ar Isotopic Studies of the Bulong Quartz-Barite Vein-Type Gold Deposit in Akqi County, Xinjiang[J]. Geological Review, 2004, 31(1):87-98.

[17] 董新丰, 薛春纪, 石福品.新疆西天山大山口金矿地质及成矿流体包裹体地球化学[J]. 地学前缘, 2011, 18(5):172-181. Dong Xinfeng, Xue Chunji, Shi Fupin.Geological Characteristics and the Geochemistry of Ore-Forming Fluid Inclusions in Dashankou Gold Deposit, Western Tien Shan, Xinjiang[J]. Earth Science Frontiers, 2011, 18(5):172-181.

[18] 新疆维吾尔自治区地质矿产勘查开发局第八地质大队.新疆拜城县阿万达金矿预查报告[R]. 阿克苏:新疆维吾尔自治区地质矿产勘查开发局第八地质大队, 2012. Eighth Geological Team, Geology Bureau in Xinjiang Uygur Autonomous Region. Report for Geological Reconnaissance in the Awanda Gold Deposit in Baicheng County, Xinjiang[R]. Akesu:Eighth Geological Team, Geology Bureau in Xinjiang Uygur Autonomous Region, 2012.

[19] 新疆维吾尔族自治区地质调查院. 新疆1:25万喀赞其幅(K44C002004)区域地质调查成果报告[R]. 乌鲁木齐:新疆维吾尔族自治区地质调查院, 2004. Geology Survey in Xinjiang Uygur Autonomous Region. Report for Regional Geological Survey of 1/250 000 Kazanqi Geological Map (K44C002004) in Xinjiang Uygur Autonomous Region, China[R]. Urumqi:Geology Survey in Xinjiang Uygur Autonomous Region, 2004.

[20] 朱志新, 李锦轶, 董莲慧, 等.新疆南天山构造格架及构造演化[J]. 地质通报, 2009, 28(12):1863-1870. Zhu Zhixin, Li Jinyi, Dong Lianhui, et al.Tectonic Framework and Tectonic Evolution of the Southern Tianshan, Xinjiang, China[J]. Geological Bulletin of China, 2009, 28(12):1863-1870.

[21] 丁清峰, 王冠, 孙丰月, 等. 青海省曲麻莱县大场金矿床成矿流体演化:来自流体包裹体研究和毒砂地温计的证据[J]. 岩石学报, 2010, 26(12):3709-3719. Ding Qingfeng, Wang Guan, Sun Fengyue, et al. Ore-Forming Fluid Evolution of Dachang Gold Deposit in Qumalai County, Qinghai Province:Evidence from Fluid Inclusion Study and Arsenopyrite Geothermometer[J]. Acta Petrologica Sinica, 2010, 26(12):3709-3719.

[22] 丁清峰, 金圣凯, 王冠, 等.青海省都兰县果洛龙洼金矿成矿流体[J]. 吉林大学学报:地球科学版, 2013, 43(2):415-426. Ding Qingfeng, Jin Shengkai, Wang Guan, et al. Ore-Forming Fluid of the Guoluolongwa Gold Deposit in Dulan County, Qinghai Province[J]. Journal of Jilin University:Earth Science Edition, 2013, 43(2):415-426.

[23] Potter R W, Clynne M A. Freezing Point Depression of Aqueous Sodium Chloride Solution[J]. Economic Geology, 1978, 73:284-285.

[24] 刘斌, 段光贤. NaCl-H2O溶液包裹体的密度式和等容式及其应用[J]. 矿物学报, 1987, 7(4):345-352. Liu Bin, Duan Guangxian. Density Formula, Volume Formula and Application of NaCl-H2O Fluid Inclusion[J]. Acta Mineralogica Sinica, 1987, 7(4):345-352.

[25] Bozzo A T, Chen J R, Barduhn A J, et al. The Properties of Hydrates of Chlorine and Carbon Dioxide[J]. Desalination, 1975, 16:303-320.

[26] Touret J L R, Bottinga Y. Equation of State for Carbon Dioxide:Application to Carbonic Inclusions[J]. Bull Mineral, 1979, 102:577-583.

[27] Kretschmar U, Scott S D. Phase Relations Involving Arsenopyrite in the System Fe-As-S and Their Application[J]. Canadian Mineralogist, 1976, 14:364-386.

[28] Sharp Z D, Essene E J, Kelly W C.A Re-Examination of the Arsenopyrite Geothermometer;Pressure Considerations and Applications to Natural Assemblages[J]. Canadian Mineralogis, 1985, 23:517-534.

[29] Choi S G, Youm S J. Compositonal Variation of Ar-senopyrite and Fluid Evolution at the Ulsan Deposit, Southeastern Korea:A Low-Sulfidation Porphyry System[J]. The Canadian Mineralogist, 2000, 38:567-583.

[30] Groves D I, Ho S E.Nature and Setting of Primary Gold Deposits:Ore Minerals[C]//Ho S E, Groves D I, Bennett J M. Gold Deposits of the Archaean Yilgarn Block, Western Australia:Nature, Genesis and Exploration Guides.:Univ W Publ, 1990:90-92.

[31] Brown P E. FLINCOR:A Microcomputer Program for the Reduction and Investigation of Fluid-Inclusion Data[J]. Am Mineralogist, 1989, 74:1390-1393.

[32] 陈衍景.造山型矿床、成矿模式及找矿潜力[J]. 中国地质, 2006, 33(6):1181-1196. Chen Yanjing. Orogenic-Type Deposits and Their Metallogenic Model and Exploration Potential[J]. Geology in China, 2006, 33(6):1181-1196.

[33] Kerrich R, Goldfarb R, Groves D, et al.The Chara-cteristics, Origins, and Geodynamics of Supergiant Gold Metallogenic Provinces[J]. Science in China:Series D, 2000, 43(Sup.):1-68.

[34] 陈衍景, 倪培, 范宏瑞, 等.不同类型热液金矿系统的流体包裹体特征[J]. 岩石学报, 2007, 23(9):2085-2108. Chen Yanjing, Ni Pei, Fan Hongrui, et al. Diagnostic Fluid Inclusions of Different Types Hydrothermal Gold Deposits[J]. Acta Petrologica Sinica, 2007, 23(9):2085-2108.

[35] Wilkinson J J.Fluid Inclusions in Hydrothermal Ore Deposits[J]. Lithos, 2001, 55:229-272.

[36] Groves D I, Goldfarb R J, Gebre-Mariam M, et al. Orogenic Gold Deposits:A Proposed Classification in the Context of Their Crustal Distribution and Relationship to Other Gold Deposit Types[J]. Ore Geology Reviews, 1998, 13:7-27.

[37] Gao J, Klemd R, Qian Q, et al. The Collision Between the Yili and Tarim Blocks of the Southwestern Altaids:Geochemical and Age Constraints of a Leucogranite Dike Crosscutting the HP-LT Metamorphic Belt in the Chinese Tianshan Orogen[J]. Tectonophysics, 2011, 499:118-131.

[38] Gao J, Li M S, Xiao X C, et al. Paleozoic Tectonic Evolution of the Tianshan Orogen, Northwestern China[J]. Tectonophysics, 1998, 287:213-231.

[39] Huang H, Zhang Z C, Kusky T, et al. Continental Vertical Growth in the Transitional Zone Between South Tianshan and Tarim, Western Xinjiang, NW China:Insight from the Permian Halajun A1-Type Granitic Magmatism[J].Lithos, 2012, 155:49-66.

[40] Huang H, Zhang Z C, Kusky T, et al.Geochronology and Geochemistry of the Chuanwulu Complex in the South Tianshan, Western Xinjiang, NW China:Implications for Petrogenesis and Phanerozoic Continental Growth[J]. Lithos, 2012, 140:66-85.

[1] 李向文, 张志国, 王可勇, 孙加鹏, 杨吉波, 杨贺. 大兴安岭北段宝兴沟金矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1071-1084.
[2] 李文强, 郭巍, 孙守亮, 杨绪海, 刘帅, 侯筱煜. 塔里木盆地巴楚—麦盖提地区古生界油气藏成藏期次[J]. 吉林大学学报(地球科学版), 2018, 48(3): 640-651.
[3] 陈瑞莉, 陈正乐, 伍俊杰, 梁志录, 韩凤彬, 王永, 肖昌浩, 韦良喜, 沈滔. 甘肃合作早子沟金矿床流体包裹体及硫铅同位素特征[J]. 吉林大学学报(地球科学版), 2018, 48(1): 87-104.
[4] 和成忠, 张德会, 吴鸣谦, 夏岩, 张荣臻, 胡铁军. 辽宁青城子姚家沟斑岩型钼矿流体包裹体[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1717-1731.
[5] 门兰静, 孙景贵, 王好均, 柴鹏, 赵克强, 古阿雷, 刘城先. 延边浅成高硫化热液金矿床的成矿流体起源与演化:以杜荒岭和九三沟矿床为例[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1365-1382.
[6] 陈晶源, 王长明, 贺昕宇, 陈良, 吴彬, 王乔, 张端, 姚恩亚, 董猛猛. 河南瓦房铅锌矿床地质、流体包裹体和稳定同位素特征[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1383-1404.
[7] 张艳, 韩润生, 魏平堂, 邱文龙. 云南会泽矿山厂铅锌矿床流体包裹体特征及成矿物理化学条件[J]. 吉林大学学报(地球科学版), 2017, 47(3): 719-733.
[8] 赵彦德, 齐亚林, 罗安湘, 程党性, 李继宏, 黄锦绣. 应用流体包裹体和自生伊利石测年重构鄂尔多斯盆地侏罗系油藏烃类充注史[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1637-1648.
[9] 王力, 孙丽伟. 山东省寺庄金矿床成矿流体特征[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1697-1710.
[10] 张延军, 孙丰月, 李碧乐, 李良, 陈扬. 青海湟中县三岔金矿流体包裹体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1342-1353.
[11] 王晰, 段明新, 任云生, 侯召硕, 孙德有, 郝宇杰. 内蒙古额尔古纳地区八大关铜钼矿床流体包裹体特征与成矿时代[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1354-1367.
[12] 吴海枝, 韩润生, 吴鹏. 楚雄盆地六苴砂岩型铜矿床成矿流体性质及演化[J]. 吉林大学学报(地球科学版), 2016, 46(2): 398-411.
[13] 王可勇, 付丽娟, 韦烈民, 王志高. 辽宁榛子沟铅锌矿床热液叠加成矿作用特征及成矿流体来源[J]. 吉林大学学报(地球科学版), 2016, 46(1): 80-90.
[14] 韩润生, 李波, 倪培, 邱文龙, 王旭东, 王天刚. 闪锌矿流体包裹体显微红外测温及其矿床成因意义——以云南会泽超大型富锗银铅锌矿床为例[J]. 吉林大学学报(地球科学版), 2016, 46(1): 91-104.
[15] 张志辉, 张达, 狄永军, 李兴俭, 阙朝阳, 马先平, 杜泽忠. 安徽铜陵焦冲金矿床成矿流体特征及成矿机制[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1657-1666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!