吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (4): 1164-1172.doi: 10.13278/j.cnki.jjuese.201504202
高玮, 胡瑞林
Gao Wei, Hu Ruilin
摘要:
利用应变控制式静力三轴剪切仪,对具有不同胶结程度和含石量的土石混合体试样进行了固结不排水剪切试验;通过对制备的土石混合体试样的应力-应变关系、孔隙水压力变化、有效应力路径和抗剪强度指标等试验结果的对比分析,探讨了不同胶结程度土石混合体试样的差别及产生原因.试验结果表明:不同胶结程度土石混合体破坏方式可分为剪切带破坏和鼓肚变形破坏两种基本类型;胶结使得土石混合体应力应变关系和孔隙水压力变化与未胶结土石混合体差异明显,胶结作用对土石混合体的剪胀和软化特性影响显著.在块石软硬程度、形状及试样密实度相近的条件下,不论是否胶结或胶结程度如何,土石混合体有效内摩擦角φ'与无量纲粒度分布特征参数D50WBP/D60具有较好的线性相关性.试验结论为确定不同胶结程度土石混合体强度提供了参考.
中图分类号:
[1] 《工程地质手册》编写委员会. 工程地质手册[M].3版.北京: 中国建筑工业出版社, 1992. The Editorial Board of Engineering Geology Handbook. Engineering Geology Handbook[M]. 3rd.Beijing: China Architecture & Building Press,1992.[2] Medley E. The Engineering Characterization of Mé-langes and Similar Block-in-Matrix Rocks (Bimrocks)[D]. Berkeley: University of California, 1994.[3] 油新华. 土石混合体的随机结构模型及其应用研究[D]. 北京: 北京交通大学, 2001. You Xinhua. Stochastic Structural Model of the Earth-Rock Aggregate and Its Application[D]. Beijing: Beijing Jiaotong University, 2001.[4] 徐文杰. 土石混合体细观结构力学及其边坡稳定性研究[D]. 北京:中国科学院地质与地球物理研究所, 2008. Xu Wenjie. Study on Meso-Structural Mechanics (M-SM) of Soil-Rock Mixture (S-RM) and Its Slope Stability[D]. Beijing: Institute of Geology and Geophy-sics, Chinese Academy of Sciences, 2008.[5] 周中, 傅鹤林, 刘宝琛, 等. 土石混合体渗透性能的正交试验研究[J]. 岩土工程学报, 2006, 28(9): 1134-1138. Zhou Zhong, Fu Helin, Liu Baochen, et al. Orthogonal Tests on Permeability of Soil-Rock-Mixture[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(9): 1134-1138.[6] 秦尚林, 陈善雄, 韩卓, 等.巨粒土大型三轴试验研究[J]. 岩土力学, 2010, 31(增刊): 189-192. Qin Shanglin, Chen Shanxiong, Han Zhuo, et al. Large-Scale Triaxial Test Study of Behavior of over Coarse-Grained Soils[J]. Rock and Soil Mechanics, 2010, 31(Sup.): 189-192.[7] Li Xiao, Liao Qiulin, He Jianming. In-Situ Tests and a Stochastic Structural Model of Rock and Soil Aggregate in the Three Gorges Reservoir Area, China[J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(3):494-499.[8] Xu Wenjie,Hu Ruilin,Tan Rujiao.Some Geomechanical Properties of Soil-Rock Mixtures in the Hutiao Gorge Area, China[J]. Geotechnique, 2007, 57(3): 255-264.[9] 舒志乐,刘新荣,刘保县,等.土石混合体粒度分形特性及其与含石量和强度的关系[J]. 中南大学学报:自然科学版,2010,41(3):1096-1101. Shu Zhile, Liu Xinrong, Liu Baoxian, et al. Granule Fractal Properties of Earth-Rock Aggregate and Relationship between Its Gavel Content and Strength[J]. Journal of Central South University:Science and Technology, 2010,41(3):1096-1101.[10] Coli N,Berry P,Boldini D.In Situ Non-Conventional Shear Tests for the Mechanical Characterization of Bimrock[J]. International Journal of Rock Mechanics & Mining Sciences, 2011,48:95-102.[11] 韩爱民,肖军华,乔春元,等.三轴压缩下南京下蜀土的宏、微观性状试验[J]. 吉林大学学报:地球科学版,2013,43(6):1897-1903. Han Aimin, Xiao Junhua, Qiao Chunyuan,et al. Experiments on Micro and Macro Behaviors of Nanjing Xiashu Soil Under Triaxial Compression[J]. Journal of Jilin University: Earth Science Edition, 2013,43(6):1897-1903.[12] Medley E, Lindquist E S. The Engineering Significance of the Scale-Independence of Some Franciscan Melanges in California, USA//Proceedings of the 35th US Rock Mechanics Symposium,Reno,Nevada. Rotterdam: Balkema, 1995:907-914.[13] 郭庆国. 粗粒土的工程特性及应用[M]. 郑州: 黄河水利出版社, 1999. Guo Qingguo. Engineering Properties and Applications of Coarse Grained Soil[M]. Zhengzhou:The Yellow River Conservancy Press, 1999.[14] GB/T 50123-1999 土工试验方法标准[S].北京:中国计划出版社,1999. GB/T 50123-1999 Standard for Soil Test Method[S]. Beijing: China Planning Press, 1999.[15] Lindquist E S. The Strength and Deformation Pro-perties of Mélange[D]. Berkeley: Univerity of California, 1994.[16] Saxena S K, Lastrico M. Static Properties of Lightly Cemented Sand[J]. Journal of Geotechnical Enginee-ring,1978, 104(12): 1449-1464.[17] Clough G W,Sitar N,Bnchus R C,et al. Cemented Sands Under Static Loading[J]. Journal of Geotechnical Engineering, 1981, 107(6): 799-817.[18] 蒋明镜,沈珠江. 结构性黏土试样人工制备方法研究[J]. 水利学报, 1997(1): 56-61. Jiang Mingjing, Shen Zhujiang. A Method of Artificial Preparation of Structured Clay Samples[J]. Journal of Hydraulic Engineering, 1997(1): 56-61.[19] 罗开泰,聂青,张树祎. 等人工制备初始应力各向异性结构性土方法探讨[J]. 岩土力学,2013,34(10):2815-2820. Luo Kaitai, Nie Qing, Zhang Shuyi, et al. Investigation on Artificially Structured Soils with Initial Stress-Induced Anisotropy[J]. Rock and Soil Mechanics, 2013,34(10): 2815-2820.[20] 徐文杰,胡瑞林,谭儒蛟,等.虎跳峡龙蟠右岸土石混合体野外试验研究[J]. 岩石力学与工程学报, 2006, 25(6): 1270-1277. Xu Wenjie, Hu Ruilin, Tan Rujiao, et al.Study on Field Test of Rock-Soil Aggregate on Right Bank of Longpan in Tiger-Leaping Gorge Area[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6): 1270-1277.[21] 李博. 西藏邦铺矿区高原特殊碎石土力学特性的大型直剪试验研究[D]. 武汉:中国地质大学, 2012. Li Bo. Study on Mechanical Properties of Plateau Special Gravel Soil in Bangpu Mine in Tibet With Large Scale Shear Test[D].Wuhan: China University of Geosciences,2012. |
[1] | 付建康, 罗刚, 胡卸文. 滑坡堰塞坝越顶溢流破坏的物理模型实验[J]. 吉林大学学报(地球科学版), 2018, 48(1): 203-212. |
[2] | 施有志, 柴建峰, 林树枝, 李秀芳. 地下综合管廊边界条件对地震动力响应影响数值分析[J]. 吉林大学学报(地球科学版), 2018, 48(1): 213-225. |
[3] | 雷华阳, 王铁英, 张志鹏, 卢海滨, 刘敏. 高黏性新近吹填淤泥真空预压试验颗粒流宏微观分析[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1784-1794. |
[4] | 潘建立. 顶管施工引起土体变形的计算方法及应用[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1458-1465. |
[5] | 卫凌云,秦胜伍,陈慧娥. 基坑开挖对单桩及群桩回弹位移的影响分析[J]. 吉林大学学报(地球科学版), 2014, 44(2): 584-590. |
[6] | 沈世伟, 佴磊, 徐燕. 准等时距QGM(1|1)模型分段预测法及其在草炭土路基沉降预测中的应用[J]. J4, 2011, 41(4): 1098-1103. |
[7] | 石少敏. 动力法计算振冲碎石桩桩体压缩模量[J]. J4, 2011, 41(1): 172-176. |
[8] | 张先伟, 王常明, 张淑华. 软土蠕变数据处理方法的对比分析[J]. J4, 2010, 40(6): 1401-1408. |
[9] | 陶波,佴磊,伍法权,郭改梅,柴建峰. 论静止侧压力对抗滑桩的作用[J]. J4, 2006, 36(05): 837-840. |
[10] | 潘殿琦,张祖培,潘殿彩,陈义民,徐 瑞. 人工冻土纵波波速与温度和含水率的关系[J]. J4, 2006, 36(04): 588-591. |
[11] | 柳雁玲,佴 磊,刘永平. 和龙沿江公路傍山隧道偏压特征分析[J]. J4, 2006, 36(02): 240-0244. |
|