[1] Garland J L, Mills A L. Classification and Characte-rization of Heterotrophic Microbial Communities on the Basis of Patterns of Community-Level Sole-Carbon-Source Tilization[J]. Applied and Environmental Microbiology, 1991, 57(8): 2351-2359.
[2] 吴才武, 赵兰坡. 土壤微生物多样性的研究方法[J]. 中国农学通报, 2011, 27(11): 231-235. Wu Caiwu, Zhao Lanpo.Technologies on Soil Microbiology Diversity[J]. Chinese Agricultural Science Bulletin, 2011, 27(11): 231-235.
[3] 苏小四, 孟祥菲, 张文静, 等. 人工回灌过程中地下水微生物群落变化[J]. 吉林大学学报:地球科学版, 2015, 45(2): 573-583. Su Xiaosi, Meng Xiangfei, Zhang Wenjing, et al. Change of the Groundwater Microbial Community During Artificial Recharge Process[J]. Journal of Jilin University: Earth Science Edition, 2015, 45(2): 573-583.
[4] Li S H, Liu K X, Liao Z W. Method for Simplification of Characteristic Carbon Sources for Biolog Analysis of Soil Microbial Community and Its Application[J]. Scientia Agricultura Sinica, 2010, 43(3): 523-528.
[5] Myers R T, Zak D R, White D C, et al. Landscape-Level Patterns of Microbial Community Composition and Substrate Use in Upland Forest Ecosystems[J]. Soil Science Society of America Journal, 2001, 65(2): 359-367.
[6] Garland J L. Analytical Approaches to the Characterization of Samples of Microbial Communities Using Patterns of Potential C Source Utilization[J]. Soil Biology and Biochemistry, 1996, 28(2): 213-221.
[7] Garland J L. Analysis and Interpretation of Community-Level Physiological Profiles in Microbial Ecology[J]. FEMS Microbiology Ecology, 1997, 24(4): 289-300.
[8] De Fede K L, Panaccione D G, Sexstone A J. Characterization of Dilution Enrichment Cultures Obtained from Size-Fractionated Soil Bacteria by BIOLOGTM Community-Level Physiological Profiles and Restriction Analysis of 16Sr RNA Genes[J]. Soil Biology and Biochemistry, 2001, 33(11): 1555-1562.
[9] De Fede K L, Sexstone A J. Differential Response of Size-Fractionated Soil Bacteria in BIOLOG® Microtitre Plates[J]. Soil Biology and Biochemistry, 2001, 33(11): 1547-1554.
[10] 金剑, 王光华, 陈雪丽, 等. Biolog-ECO解析不同大豆基因型R1期根际微生物群落功能多样性特征[J]. 大豆科学, 2007, 26(4): 565-570. Jin Jian, Wang Guanghua, Chen Xueli, et al. Analysis of Microbial Community Functional Diversity in Rhizosphere of Different Soybean Genotypes R1 Stage Using Biolog-ECO Method[J]. Soybean Science,2007, 26(4): 565-570.
[11] Zak J C, Willig M R, Moorhead D L, et al. Functional Diversity of Microbial Communities: A Quantitative Approach[J]. Soil Biology and Biochemistry, 1994, 26(9): 1101-1108.
[12] Schutter M E, Sandeno J M, Dick R P. Seasonal, Soil Type, and Alternative Management Influences on Microbial Communities of Vegetable Cropping Systems[J]. Biology and Fertility of Soils, 2001, 34(6): 397-410.
[13] 郑丽萍, 龙涛, 林玉锁, 等. Biolog-ECO解析有机氯农药污染场地土壤微生物群落功能多样性特征[J]. 应用与环境生物学报, 2013, 19(5): 759-765. Zheng Liping, Long Tao, Lin Yusuo, et al. Biolog-ECO Analysis of Microbial Community Functional Diversity in Organochlorine Contaminated Soil[J]. Chinese Journal of Applied and Environmental Biology, 2013, 19(5): 759-765.
[14] 郑华, 欧阳志云, 王效科, 等. 不同森林恢复类型对土壤微生物群落的影响[J]. 应用生态学报,2004,15(11): 2019-2024. Zheng Hua, Ouyang Zhiyun, Wang Xiaoke, et al. Effects of Forest Restoration Patterns on Soil Microbial Communities[J]. Chinese Journal of Applied Ecology, 2004, 15(11): 2019-2024.
[15] 董立国, 蒋齐, 蔡进军, 等. 基于Biolog-ECO技术不同退耕年限苜蓿地土壤微生物功能多样性分析[J]. 干旱区研究, 2011, 28(4): 630-637. Dong Liguo, Jiang Qi, Cai Jinjun, et al. Anaysis on Functional Diversity of Edaphon Communities in Medicago Sativa Fields of Different Growth Years Based on Biolog-ECO Plates[J]. Arid Zone Research, 2011, 28(4): 630-637.
[16] 岳冰冰, 李鑫, 张会慧, 等. 连作对黑龙江烤烟土壤微生物功能多样性的影响[J]. 土壤, 2013, 45(1): 116-119. Yue Bingbing, Li Xin, Zhang Huihui, et al. Soil Microbial Diversity and Community Structure Under Continuous Tobacco Cropping[J]. Soil, 2013, 45(1): 116-119.
[17] Williams M A, Rice C W. Seven Years of Enhanced Water Availability Influences the Physiological, Structural, and Functional Attributes of a Soil Microbial Community[J]. Applied Soil Ecology, 2007, 35(3): 535-545.
[18] Kersters I,Van Vooren L,Verschuere L,et al.Utility of the Biolog System for the Characterization of Heterotrophic Microbial Communities[J]. Systematic and Applied Microbiology, 1997, 20(3): 439-447.
[19] Choi K H, Dobbs F C. Comparison of Two Kinds of Biolog Microplates (GN and ECO) in Their Ability to Distinguish Among Aquatic Microbial Communities[J]. Journal of Microbiological Methods, 1999, 36(3): 203-213.
[20] Guckert J B, Carr G J, Johnson T D, et al. Community Analysis by Biolog: Curve Integration for Statistical Analysis of Activated Sludge Microbial Habitats[J]. Journal of Microbiological Methods, 1996, 27(2): 183-197.
[21] Kaiser S K, Guckert J B, Gledhill D W. Comparison of Activated Sludge Microbial Communities Using BiologTM Microplates[J]. Water Science and Technology, 1998, 37(4): 57-63.
[22] Garland J L, Mills A L, Young J S. Relative Effectiveness of Kinetic Analysis vs Single Point Readings for Classifying Environmental Samples Based on Community-Level Physiological Profiles (CLPP)[J]. Soil Biology and Biochemistry, 2001, 33(7): 1059-1066.
[23] Engelen B, Meinken K, Von Wintzingerode F, et al. Monitoring Impact of a Pesticide Treatment on Bacterial Soil Communities by Metabolic and Genetic Fingerprinting in Addition to Conventional Testing Procedures[J]. Applied and Environmental Microbiology, 1998, 64(8): 2814-2821.
[24] Franklin R B, Garland J L, Bolster C H, et al. Impact of Dilution on Microbial Community Structure and Functional Potential: Comparison of Numerical Simulations and Batch Culture Experiments[J]. Applied and Environmental Microbiology, 2001, 67(2): 702-712.
[25] Gomez E, Garland J, Conti M. Reproducibility in the Response of Soil Bacterial Community-Level Physiological Profiles from a Land Use Intensification Gradient[J]. Applied Soil Ecology, 2004, 26(1): 21-30.
[26] Calbrix R, Laval K, Barray S. Analysis of the Potential Functional Diversity of the Bacterial Community in Soil: A Reproducible Procedure Using Sole-Carbon-Source Utilization Profiles[J]. European Journal of Soil Biology, 2005, 41(1): 11-20.
[27] 郑华, 欧阳志云, 方治国, 等. BIOLOG在土壤微生物群落功能多样性研究中的应用[J]. 土壤学报, 2004, 41(3): 456-461. Zheng Hua, Ouyang Zhiyun, Fang Zhiguo, et al. Application of Biolog to Study on Soil Microbial Community Functional Diversity[J]. Acta Pedologica Sinica, 2004, 41(3): 456-461.
[28] Preston-Mafham J, Boddy L, Randerson P F. Analysis of Microbial Community Functional Diversity Using Sole-Carbon-Source Utilisation Profiles:A Critique[J]. FEMS Microbiology Ecology, 2002, 42(1): 1-14.
[29] Warcup J. The Soil-Plate Method for Isolation of Fungi from Soil[J]. Nature, 1950, 166: 117-118.
[30] Warcup J. Isolation of Fungi from Hyphae Present in Soil[J]. Nature, 1955, 175: 953-954.
[31] Verschuere L, Fievez V, Van Vooren L, et al. The Contribution of Individual Populations to the Biolog Pattern of Model Microbial Communities[J]. FEMS Microbiology Ecology, 1997, 24(4): 353-362.
[32] 郑华, 欧阳志云, 赵同谦, 等. 不同森林恢复类型对土壤生物学特性的影响[J]. 应用与环境生物学报, 2006, 12(1): 36-43. Zheng Hua, Ouyang Zhiyun, Zhao Tongqian, et al. Effect of Different Forest Restoration Approaches on Soil Biological Properties[J]. Chinese Journal of Applied and Environmental Biology, 2006, 12(1): 36-43.
[33] Classen A T, Boyle S I, Haskins K E, et al. Community-Level Physiological Profiles of Bacteria and Fungi: Plate Type and Incubation Temperature Influences on Contrasting Soils[J]. FEMS Microbiology Ecology, 2003, 44(3): 319-328.
[34] 杨永华, 姚键, 华晓梅. 农药污染对土壤微生物群落功能多样性的影响[J]. 微生物学杂志, 2000, 20(2): 23-25. Yang Yonghua, Yao Jian, Hua Xiaomei. Effect of Pesticide Pollution Against Functional Microbial Diversity in Soil[J]. Journal of Microbiology, 2000, 20(2): 23-25.
[35] 张万儒, 许本彤, 杨承栋, 等. 山地森林土壤枯枝落叶层结构和功能研究[J]. 土壤学报, 1990, 27(2): 121-131. Zhang Wanru, Xu Bentong, Yang Chengdong, et al. Studies on Structure and Function of Forest Floors of Mountain Forest Soils[J]. Acta Pedologica Sinica, 1990, 27(2): 121-131.
[36] 莫江明, 布朗, 孔国辉, 等. 鼎湖山生物圈保护区马尾松林凋落物的分解及其营养动态研究[J]. 植物生态学报, 1996,20(6): 534-542. Mo Jiangming, Bu Lang, Kong Guohui, et al. Litter Decomposition and Its Nutrient Dynamics of a Pine Forest in Dinghushan Biosphere Reserve[J]. Acta Phytoecologica Sinica, 1996,20(6): 534-542.
[37] Ribeiro C, Madeira M, Araújo M C. Decomposition and Nutrient Release from Leaf Litter of Eucalyptus Globulus Grown Under Different Water and Nutrient Regimes[J]. Forest Ecology and Management, 2002, 171(1): 31-41.
[38] Moretto A S, Distel R A. Decomposition of and Nutrient Dynamics in Leaf Litter and Roots of Poa Pigularis and Stipa Gyneriodes[J]. Journal of Arid Environments, 2003, 55(3): 503-514. |