吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (5): 1384-1393.doi: 10.13278/j.cnki.jjuese.201505111
王加昇1, 温汉捷2
Wang Jiasheng1, Wen Hanjie2
摘要:
三丹汞矿带位于贵州省南部,是继湘黔汞矿带之外西南大面积低温成矿域内发现的又一重要汞矿带。因此,阐明带内汞矿的成矿物质来源、成矿时代及成矿动力学背景等问题,对深入探讨西南大面积低温成矿域的形成机理有着重要的作用。热液方解石是带内汞矿床的主要脉石矿物之一,作者尝试对三丹汞矿带中段交犁拉峨汞矿床中的热液方解石进行Sm-Nd同位素测年,获得等时线年龄为(129±20)Ma,MSWD=0.21,εNd=-12.9,说明成矿作用主要发生在燕山晚期。该年龄的报道为深入探讨汞矿床以及西南大面积低温成矿域的形成和演化提供了重要的信息和依据。结合前人研究认为,西南低温成矿作用主要存在两期,早期为145~155 Ma的Sb成矿作用,晚期为120~135 Ma的Sb、Au、Hg、As成矿作用。围岩下奥陶统锅塘组灰岩样品的εNd值为-12.6,与方解石εNd值极为接近,指示该矿床成矿物质可能主要来自奥陶系赋矿海相碳酸盐岩。
中图分类号:
[1] Rytuba J J. Mercury from Mineral Deposits and Potential Environmental Impact[J]. Environmental Geology, 2003, 43(3): 326-338.[2] Saupé F. Geology of the Almadén Mercury Deposit, Province of Ciudad Real, Spain[J]. Economic Geology, 1990, 85(3): 482-510.[3] Smith C N, Kesler S E, Blum J D, et al. Isotope Geochemistry of Mercury in Source Rocks, Mineral Deposits and Spring Deposits of the California Coast Ranges, USA[J]. Earth and Planetary Science Letters, 2008, 269(3/4): 399-407.[4] 鲍钰敏, 万溶江, 鲍振襄. 湘黔汞矿带相关成矿问题的讨论[J]. 北京地质, 1999 (2): 5-12. Bao Yumin, Wan Rongjiang, Bao Zhenxiang. Discussion of the Mercury Mineralization Related to the Mercury Metallogenic Belt of Hunan-Guizhou Province[J]. Beijing Geology, 1999 (2): 5-12.[5] Kuznetsov V A, Obolenskiy A A. Genesis of Mercury Ore Deposits and Sources of the Substance in the Ores[J]. International Geology Review, 1970, 13: 477-486.[6] Hall C M, Higueras P L, Kesler S E, et al. Dating of Alteration Episodes Related to Mercury Mineralization in the Almadén District, Spain[J]. Earth and Planetary Science Letters, 1997, 148: 287-298.[7] Peng J T,Hu R Z,Burnard P G.Samarium-Neody-mium Isotope Systematics of Hydrothermal Calcites from the Xikuangshan Antimony Deposit (Hunan, China): The Potential of Calcite as a Geochronometer[J]. Chemical Geology, 2003, 200(1/2): 129-136.[8] Wang J S, Wen H J, Fan H F, et al. Sm-Nd Geochronology, REE Geochemistry and C and O Isotope Characteristics of Calcites and Stibnites from the Banian Antimony Deposit, Guizhou Province, China[J]. Geochemical Journal, 2012, 46(5): 393-407.[9] Su W C, Hu R Z, Xia B, et al. Calcite Sm-Nd Isochron Age of the Shuiyindong Carlin-Type Gold Deposit, Guizhou, China[J]. Chemical Geology, 2009, 258(3/4): 269-274.[10] 林极峰. 交犁汞矿床成矿地质条件及控矿特征[J]. 贵州地质, 1985(3): 241-252. Lin Jifeng. Geolgical Metallogenetic Conditions and Ore-Control Characteristics of Jiaoli Mercury Deposit, Guizhou[J]. Guizhou Geology, 1985(3): 241-252.[11] 贵州省地矿局104地质队. 贵州省三都县交梨汞、金矿床金矿普查地质报告[R]. 贵阳:贵州省地质资料馆, 1992. Team 104 of Guizhou Geology and Minerals Bureau. Geological Survey Report of Jiaoli Mercury and Gold Deposits in Sandu, Guizhou Province[R]. Guiyang: Geological Archives of Guizhou Province, 1992.[12] 李雪青, 陈卫东. 贵州三都交犁汞-金矿床地质特征及找矿潜力[J]. 贵州地质, 2009, 26(3): 185-190. Li Xueqing, Chen Weidong. Geologic Character and Prospecting Potential of Hg-Au Deposit in Jiaoli of Sandu, Guizhou[J]. Guizhou Geology, 2009, 26(3): 185-190.[13] Bell K, Anglin C D, Franklin J M. Sm-Nd and Rb-Sr Isotope Systematics of Scheelites: Possible Implications for the Age and Genesis of Vein-Hosted Gold Deposits[J]. Geology, 1989, 17(6): 500-504.[14] Halliday A N, Shepherd T J, Dicken A P, et al. Sm-Nd Evidence for the Age and Origin of a Mississippi Valley Type Ore Deposit[J]. Nature, 1990, 344: 54-56.[15] Chesley J T, Halliday A N, Scrivener R C. Sm-Nd Direct Dating of Fluorite Mineralization[J]. Science, 1991, 252: 949-951.[16] Chesley J T, Halliday A N, Kyser T K, et al. Direct Dating of MVT Mineralization: Use of Sm-Nd in Fluorite[J]. Economic Geology, 1994, 89(5): 1192-1199.[17] Anglin C D, Jonasson I R, Franklin J M. Sm-Nd Dating of Scheelite and Tourmaline: Implications for the Genesis of Archean Gold Deposits, Val d'Or, Canada[J]. Economic Geology, 1996, 91(8): 1372-1382.[18] Darbyshire D P F, Pitfield P E J, Campbell S D G. Late Archean and Early Proterozoic Gold-Tungsten Mineralization in the Zimbabwe Archean Craton: Rb-Sr and Sm-Nd Isotope Constraints[J]. Geology, 1996, 24(1): 19-22.[19] Eichhorn R,Höll R,Jagoutz E,et al.Dating Scheelite Stages: A Strontium, Neodymium, Lead Approach from the Felbertal Tungsten Deposit, Central Alps, Austria[J]. Geochimica et Cosmochimica Acta, 1997, 61(23): 5005-5022.[20] Jiang S Y, Slack J F, Palmer M R. Sm-Nd Dating of the Giant Sullivan Pb-Zn-Ag Deposit, British Columbia[J]. Geology, 2000, 28(8): 751-754.[21] Turner W A, Heaman L M, Creaser R A. Sm-Nd Fluorite Dating of Proterozoic Low-Sulfidation Epithermal Au-Ag Deposits and U-Pb Zircon Dating of Host Rocks at Mallery Lake, Nunavut[J]. Canada Earth Sci,2003, 40(12): 1789-1804.[22] Roberts S,Palmer M R,Waller L.Sm-Nd and REE Characteristics of Tourmaline and Scheelite from the Björkdal Gold Deposit, Northern Sweden: Evidence of an Intrusion-Related Gold Deposit[J]. Economic Geology, 2006, 101(7): 1415-1425.[23] Li W B, Huang Z L, Yin M D. Dating of the Giant Huize Zn-Pb Ore Field of Yunnan Province, Southwest China: Constraints from the Sm-Nd System in Hydrothermal Calcite[J]. Resource Geology, 2007, 57(1): 90-97.[24] Uysal T, Zhao J X, Golding S D, et al. Sm-Nd Dating and Rare-Earth Element Tracing of Calcite: Implications for Fluid-Flow Events in the Bowen Basin, Australia[J]. Chemical Geology, 2007, 238(1/2): 63-71.[25] Cherniak D J. REE Diffusion in Calcite[J]. Earth and Planetary Science Letters, 1998, 160(3/4): 273-287.[26] 严均平. 贵州汞矿地质[M]. 北京: 地质出版社, 1989. Yan Junping. Geology of Mercury Deposits of Guizhou Province[M]. Beijing: Geology Publishing House,1989.[27] 谢文安, 谢琳玲. 湘西汞矿床的地质特征与成因[J]. 矿产与地质, 1991, 5(24): 338-343. Xie Wen'an, Xie Linling. Geological Characteristics of Mercury Deposits and Its Metallogeny in the Western Hunan Province[J]. Mineral Resources and Geology, 1991, 5(24): 338-343.[28] 花永丰, 刘幼平. 贵州万山超大型汞矿成矿模式[J]. 贵州地质, 1996, 13(2): 161-165. Hua Yongfeng, Liu Youping. A Genetic Model for the Wanshan Super-Large Mercury Deposit, Guizhou[J]. Guizhou Geology,1996, 13(2): 161-165.[29] 胡瑞忠, 彭建堂, 马东升, 等. 扬子地块西南缘大面积低温成矿时代[J]. 矿床地质, 2007, 26(6): 583-596. Hu Ruizhong, Peng Jiantang, Ma Dongsheng, et al. Epoch of Large-Scale Low-Temperature Mineralizations in Southwestern Yangtze Massif[J]. Mineral Deposits,2007, 26(6): 583-596.[30] 李朝阳. 中国低温热液矿床集中分布区的一些地质特点[J]. 地学前缘, 1999, 6(1): 163-170. Li Chaoyang. Some Geological Characteristics of Concentrated Distribution Area of Epithermal Deposits in China[J]. Earth Science Frontiers,1999, 6(1): 163-170.[31] 陈江峰, 周泰禧, 邢凤鸣, 等. 皖南浅变质岩和沉积岩的钕同位素组成及沉积物物源区[J]. 科学通报, 1989 (20): 1572-1574. Chen Jiangfeng, Zhou Taixi, Xing Fengming, et al. Nd Isotopic Composition and Sedimentary Source Area of Epimetamorphic Rock and Sedimentary Rock in South Anhui[J]. Chinese Science Bulletin, 1989 (20): 1572-1574.[32] 李献华. 扬子南缘沉积岩的Nd同位素演化及其大地构造意义[J]. 岩石学报, 1996, 12(3): 359-369. Li Xianhua. Nd Isotopic Evolution of Sediments from the Southern Margin of the Yangtze Block and Its Tectonic Significance[J]. Acta Petrologica Sinica, 1996, 12(3): 359-369.[33] Ling H F, Shen W Z, Zhang B T, et al. Nd Isotopic Composition and Material Source of Pre-and Post-Sinian Sedimentary Rocks in Xiushui Area, Jiangxi Province[J]. Chinese Journal of Geochemistry, 1992, 11(1): 80-87.[34] 马东升. 华南中、低温成矿带元素组合和流体性质的区域分布规律[J]. 矿床地质, 1999, 18(4): 347-358. Ma Dongsheng. Regional Pattern of Element Composition and Fluid Character in Medium-Low Temperature Metallogenic Province of South China[J]. Mineral Deposits, 1999, 18(4): 347-358.[35] 孙国胜, 胡瑞忠, 苏文超, 等. 扬子地块西南缘低温成矿域Au、Sb、Hg、As矿床区域分布上的共生分异及控制因素[J]. 地质地球化学, 2003, 31(4): 50-55. Sun Guosheng, Hu Ruizhong, Su Wenchao, et al. Geology-Geochemistry Regional Association and Fraction Mechanism of Au, Sb, Hg and As Deposits in Vast Epithermal Mineralization Area at the Southwestern Margin of the Yangtze Block[J]. Geology Geochemistry, 2003, 31(4): 50-55.[36] 王国芝, 胡瑞忠, 苏文超, 等. 滇-黔-桂地区右江盆地流体流动与成矿作用[J]. 中国科学:D 辑, 2002, 32(增刊): 78-86. Wang Guozhi, Hu Ruizhong, Su Wenchao, et al. Fluid Flow and Mineralization of Youjiang Basin in Yunnan-Guizhou-Guangxi Area[J]. Science in China:Series D, 2002, 32(Sup.): 78-86.[37] Hu X W, Pei R F, Zhou S. Sm-Nd Dating for Antimony Mineralization in the Xikuangshan Deposit, Hunan, China[J]. Resource Geology, 1996, 46(4): 227-231.[38] 韦文灼. 马雄锑矿床地质特征[J].西南矿产地质, 1993(2): 8-16. Wei Wenzhuo. Geological Features of Maxiong Sb Deposit[J]. Mineral Resources in Southwestern China, 1993(2):8-16.[39] 朱赖明, 刘显凡, 金景福, 等. 滇-黔-桂微细浸染型金矿床时空分布与成矿流体来源研究[J]. 地质科学, 1998, 33(4): 463-474. Zhu Laiming, Liu Xianfan, Jin Jingfu, et al. The Study of the Time-Space Distribution and Source of Ore-Forming Fluid for the Fine-Disseminated Gold Deposits in the Yunnan-Guizhou-Guangxi Area[J]. Chinese Journal of Geology, 1998, 33(4): 463-474.[40] 彭建堂, 胡瑞忠, 蒋国豪. 萤石Sm-Nd同位素体系对晴隆锑矿床成矿时代和物源的制约[J]. 岩石学报, 2003, 19(4): 785-791. Peng Jiantang, Hu Ruizhong, Jiang Guohao. Samarium-Neodymium Isotope System of Fluorites from the Qinglong Antimony Deposit, Guizhou Province: Constraints on the Mineralizing Age and Ore-Forming Minerals' Sources[J]. Acta Petrologica Sinica, 2003, 19(4): 785-791.[41] 俸月星, 陈民扬, 徐文炘. 独山锑矿稳定同位素地球化学研究[J]. 矿产与地质, 1993, 7(2): 119-126. Feng Yuexing, Chen Minyang, Xu Wenxin. Stable Isotope Geochemistry Research of Dushan Antimony Ore Deposit[J]. Mineral Resources and Geology, 1993, 7(2): 119-126.[42] 张峰, 杨科佑. 黔西南微细浸染型金矿裂变径迹成矿时代研究[J]. 科学通报, 1992(17): 1593-1595. Zhang Feng, Yang Keyou. Fission-Track Ages of Micro-Disseminated Gold Deposits in Southwestern Guizhou[J]. Chinese Science Bulletin, 1992(17): 1593-1595.[43] 苏文超, 杨科佑, 胡瑞忠, 等. 中国西南部卡林型金矿床流体包裹体年代学研究:以贵州烂泥沟大型卡林型金矿床为例[J]. 矿物学报, 1998, 18(3): 359-362. Su Wenchao, Yang Keyou, Hu Ruizhong, et al. Fluid Inclusion Chronological Study of the Carlin-Type Gold Deposits in Southwestern China: As Exemplified by the Lannigou Gold Deposit, Guizhou Province[J]. Acta Mineralogical Sinica, 1998, 18(3): 359-362.[44] 罗孝桓. 黔西南右江区金矿床控矿构造样式及成矿作用分析[J]. 贵州地质, 1997, 14(4): 312-320. Luo Xiaohuan. Analysis of Glod Mineralization in Southwestern Guizhou Based on Structural Styles[J]. Guizhou Geology, 1997, 14(4): 312-320.[45] 贾蓉芬, 陈庆年, 周丕康, 等. 贵州丹寨卡林型金矿中金的富集阶段与有机质演化关系[J]. 地质找矿论丛, 1993, 8(4): 69-81. Jia Rongfen, Chen Qingnian, Zhou Peikang, et al. Relation Between Au-Enrichment Periods and Organic Matter in Danzhai Gold Deposit, Guizhou[J]. Contributions to Geology and Mineral Resources Research, 1993, 8(4): 69-81. |
[1] | 范卓颖, 林承焰, 鞠传学, 韩长城, 熊陈微. 塔河油田二区奥陶系优势储集体特征及控制因素[J]. 吉林大学学报(地球科学版), 2017, 47(1): 34-47. |
[2] | 牛君, 黄文辉, 丁文龙, 蒋文龙, 张亚美, 漆立新, 云露, 吕海涛. 麦盖提斜坡奥陶系碳酸盐岩碳氧同位素特征及其意义[J]. 吉林大学学报(地球科学版), 2017, 47(1): 61-73. |
[3] | 徐波, 唐铁柱, 李辰. 鄂尔多斯盆地中东部马五段碳酸盐岩气藏富气主控因素—以陕200井区为例[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1299-1309. |
[4] | 马伯永, 王根厚, 李尚林, 徐红燕. 羌塘盆地东部中侏罗统陆源碎屑与碳酸盐混合沉积成岩特征[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1310-1321. |
[5] | 谭思哲, 高顺莉, 葛和平, 付焱鑫. 南黄海盆地二叠系烃源岩孢粉相特征及其形成环境[J]. 吉林大学学报(地球科学版), 2015, 45(3): 691-700. |
[6] | 张广智, 陈娇娇, 陈怀震, 张金强, 印兴耀. 基于岩石物理模版的碳酸盐岩含气储层定量解释[J]. 吉林大学学报(地球科学版), 2015, 45(2): 630-638. |
[7] | 金博, 黄先雄, 常广发,张胜斌,付海波,李铁柱. 滨里海盆地Д南石炭系碳酸盐岩储层类型及分布特征[J]. 吉林大学学报(地球科学版), 2014, 44(6): 2042-2050. |
[8] | 赵 中 平. 井斜角对裂缝特征参数统计的影响及其意义[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1798-1804. |
[9] | 李振宏,董树文,渠洪杰. 华北克拉通北缘侏罗纪造山过程及关键时限的沉积证据[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1553-1574. |
[10] | 郄莹,付晓飞,孟令东,许鹏. 碳酸盐岩内断裂带结构及其与油气成藏[J]. 吉林大学学报(地球科学版), 2014, 44(3): 749-761. |
[11] | 鲁功达,晏鄂川,王环玲,王雪明,谢良甫. 基于岩石地质本质性的碳酸盐岩单轴抗压强度预测[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1915-1921. |
[12] | 杜尚海,苏小四,郑连阁. CO2泄漏停止后天然条件下浅层含水层的自我修复能力评价[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1980-1986. |
[13] | 杨有星,金振奎,白武厚,乔东生,刁丽颖,孟凡洋,袁明会,张春. 黄骅坳陷歧北斜坡区薄层湖相碳酸盐岩沉积相模式及演化特征[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1330-1340. |
[14] | 周波,邱海峻, 段书府,李启明,邬光辉. 塔中Ⅰ号断裂坡折带上奥陶统碳酸盐岩储层微观孔隙成因[J]. 吉林大学学报(地球科学版), 2013, 43(2): 351-359. |
[15] | 王小敏,陈昭年,樊太亮,余腾孝,曹自成,何海. 巴麦地区晚石炭世碳酸盐岩台内滩储层综合评价[J]. 吉林大学学报(地球科学版), 2013, 43(2): 371-381. |
|