吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (6): 1855-1861.doi: 10.13278/j.cnki.jjuese.201506303

• 地球探测与信息技术 • 上一篇    下一篇

基于粒子群快速优化MP算法的多子波分解与重构

刘霞1, 陈晨1, 赵玉婷2, 汪鑫1   

  1. 1. 东北石油大学电气信息工程学院, 黑龙江 大庆 163318;
    2. 中国石油天然气集团公司大庆油田有限责任公司, 黑龙江 大庆 163002
  • 收稿日期:2015-01-05 发布日期:2015-11-26
  • 作者简介:刘霞(1970),女,教授,博士,主要从事信号处理、鲁棒滤波、模型降阶、网络控制系统等研究,E-mail:liu-xia2k@163.com。
  • 基金资助:

    黑龙江省自然科学基金项目(F201404)

Multi-Wavelet Decomposition and Reconstruction Based on Matching Pursuit Algorithm Fast Optimized by Particle Swarm

Liu Xia1, Chen Chen1, Zhao Yuting2, Wang Xin1   

  1. 1. School of Electrical Engineering and Information, Northeast Petroleum University, Daqing 163318, Heilongjiang, China;
    2. Daqing Oilfield, China National Petroleum Corporation, Daqing 163002, Heilongjiang, China
  • Received:2015-01-05 Published:2015-11-26

摘要:

针对地震信号多子波分解与重构技术中匹配追踪算法能够根据地震信号自身特点进行自适应分解、但其计算量庞大的问题,笔者提出一种粒子群快速优化算法,用于快速搜索地震信号稀疏分解的最优匹配原子。即在迭代过程中,将搜索区域确定在高斯函数能量集中的部分,避免了搜索过程的"贪婪性",能有效降低稀疏分解复杂度。同时,在粒子群算法中引入了一种多项式变异算子,可以有效避免搜索最优解的过度集中。实验结果证明,此算法将匹配追踪的分解精度提高了67倍,更使计算效率提高了153倍。

关键词: 多子波, 匹配追踪, 粒子群

Abstract:

In a multi-wavelet decomposition and reconstruction of seismic signal, the matching pursuit algorithm can be adaptive according to the characteristics of the seismic signal itself. In view of the large amount of calculation, the author presents a particle swarm fast optimization algorithm, which is used for fast search optimum matching atoms of seismic signal sparse decomposition. In concrete, the searching area is determined by the energy concentrated part of Gaussian function in the process of iteration. This can avoid the greediness during the searching process, and effectively reduce the sparse decomposition complexity. At the same time, a polynomial mutation operator is introduced in the particle swarm optimization algorithm, which can effectively avoid the excessive concentration during searching the optimal solution. The experimental results show that the algorithm can reach a precision of matching pursuit decomposition 67 times higher than before, and increase the calculation efficiency by 153 times.

Key words: multi-wavelet, matching pursuit, particle swarm optimization

中图分类号: 

  • P631.4

[1] 邱娜. 地震子波分解与重构技术研究[D]. 青岛: 中国海洋大学, 2012. Qiu Na. Research on Seismic Wavelet Decomposition and Reconstruction Technology[D]. Qingdao: Ocean University of China, 2012.

[2] 高静怀, 汪文秉, 朱光明, 等. 地震资料处理中小波函数选取研究[J]. 地球物理学报, 1996, 39(3): 392-400. Gao Jinghuai, Wang Wenbing, Zhu Guangming, et al. On the Choice of Wavelet Functions for Seismic Data Processing[J]. Chinese Journal of Geophysics, 1996, 39(3): 392-400.

[3] 王纯伟, 杨胜利. 基于地震信号的匹配追踪算法[J]. 科技信息, 2010, 7: 443, 460. Wang Chunwei, Yang Shengli. Matching Pursuit Algorithm Based on Seismic Signal[J]. Science & Technology Information, 2010, 7: 443, 460.

[4] 张繁昌, 李传辉. 基于正交时频原子的地震信号快速匹配追踪[J]. 地球物理学报, 2012, 55(1): 277-283. Zhang Fanchang, Li Chuanhui. Orthogonal Time-Frequency Atom Based on Fast Matching Pursuit for Seismic Signal[J]. Chinese Journal of Geophysics, 2012, 55(1): 277-283.

[5] 杨愚. 利用粒子群算法实现信号 OMP 稀疏分解[J]. 微计算机信息, 2008, 24(3/4): 178-179, 201. Yang Yu. Signal Sparse Decomposition Based on OMP and PSO[J]. Microcomputer Information, 2008, 24(3/4): 178-179, 201.

[6] 王春光, 刘金江, 孙即祥. 基于粒子群优化的稀疏分解最优匹配原子搜索算法[J]. 国防科技大学学报, 2008, 30(2): 83-87. Wang Chunguang, Liu Jinjiang, Sun Jixiang. Algorithm of Searching for the Best Matching Atoms Based on Particle Swarm Optimization in Sparse Decomposition[J]. Journal of National University of Defense Technology, 2008, 30(2): 83-87.

[7] Zhou Xiaojun, Yang Chunhua, Gui Weihua, et al. A Particle Swarm Optimization Algorithm with Variable Random Functions and Mutation[J]. Acta Automatica Sinica, 2014, 40(7): 1339-1347.

[8] 王国富, 张海如, 张法全, 等. 基于改进遗传算法的正交匹配追踪信号重建方法[J]. 系统工程与电子技术, 2011, 33(5): 974-977. Wang Guofu, Zhang Hairu, Zhang Faquan, et al. Orthogonal Matching Pursuit Signal Reconstruction Based on Improved Genetic Algorithm[J]. Systems Engineering and Electronics, 2011, 33(5): 974-977.

[9] Huggins P S, Zucker S W. Greedy Basis Pursuit Signal Processing[J]. IEEE Transactions, 2007, 55(7): 3760-3772.

[10] Kim S J, Koh K, Lustig M, et al. An Interior-Point Method for Large-Scale-Regularized Lease Squares[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 606-617.

[11] 邵君, 尹忠科, 王建英. 基于FFT的MP信号稀疏分解算法的改进[J]. 西南交通大学学报, 2006, 41(4): 466-470. Shao Jun, Yin Zhongke, Wang Jianying. Improved FFT-Based MP Algorithm for Signal Sparse Decomposition[J]. Journal of Southwest Jiaotong University, 2006, 41(4): 466-470.

[12] 王纯伟. MP算法在地震信号去噪中的应用研究[D]. 成都: 西南交通大学, 2010. Wang Chunwei. The Application Research of Matching Pursuit in Seismic Signal Denoising[D]. Chengdu: Southwest Jiaotong University, 2010.

[13] 王成梅. 地震信号稀疏分解快速算法及原子库选择研究[D]. 成都: 西南交通大学, 2010. Wang Chengmei. The Research on Fast Algorithm of Seismic Signal Sparse Decomposition and Atomic Dictionary Selection[D]. Chengdu: Southwest Jiaotong University, 2010.

[14] Wang Yanghua. Multichannel Matching Pursuit for Seismic Trace Decomposition[J]. Geophysics, 2010, 75(4): 61-66.

[15] 杜润林, 刘展. 基于粒子群优化的细胞神经网络油气重力异常信息提取[J]. 吉林大学学报:地球科学版, 2015, 45(3): 926-933. Du Runlin, Liu Zhan. Gravity Anomaly Extraction for Hydrocarbon Based on Particle Swarm Optimization and Cellular Neural Networks[J]. Journal of Jilin University: Earth Science Edition, 2015, 45(3): 926-933.

[1] 张冰, 郭智奇, 徐聪, 刘财, 刘喜武, 刘宇巍. 基于岩石物理模型的页岩储层裂缝属性及各向异性参数反演[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1244-1252.
[2] 冯智慧, 张文春, 李向群, 孙广利, 刘财. 高精度分频相干加强技术在微小断层识别中的应用[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1571-1579.
[3] 卢文喜, 郭家园, 董海彪, 张宇, 林琳. 改进的支持向量机方法在矿山地质环境质量评价中的应用[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1511-1519.
[4] 杜润林, 刘展. 基于粒子群优化的细胞神经网络油气重力异常信息提取[J]. 吉林大学学报(地球科学版), 2015, 45(3): 926-933.
[5] 刘贺,张弘强,刘斌. 基于粒子群优化神经网络算法的深基坑变形预测方法[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1609-1614.
[6] 曾琴琴,王永华,吴文贤. 二维磁异常的粒子群快速成像方法及其应用[J]. 吉林大学学报(地球科学版), 2013, 43(2): 616-622.
[7] 江思珉,王佩,施小清,郑茂辉. 地下水污染源反演的HookeJeeves吸引扩散粒子群混合算法[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1866-1872.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!