吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (4): 1244-1252.doi: 10.13278/j.cnki.jjuese.20170285

• 地球探测与信息技术 • 上一篇    下一篇

基于岩石物理模型的页岩储层裂缝属性及各向异性参数反演

张冰1, 郭智奇1, 徐聪2, 刘财1, 刘喜武3,4,5, 刘宇巍3,4,5   

  1. 1. 吉林大学地球探测科学与技术学院, 长春 130026;
    2. 中国电力工程顾问集团东北电力设计院有限公司, 长春 130021;
    3. 页岩油气富集机理与有效开发国家重点实验室, 北京 100083;
    4. 中国石化页岩油气勘探开发重点实验室, 北京 100083;
    5. 中国石化石油勘探开发研究院, 北京 100083
  • 收稿日期:2017-10-26 出版日期:2018-07-26 发布日期:2018-07-26
  • 通讯作者: 郭智奇(1980-),男,教授,博士生导师,主要从事储层地球物理、岩石物理、各向异性地震波场正反演等方面的研究,E-mail:guozhiqi@jlu.edu.cn E-mail:guozhiqi@jlu.edu.cn
  • 作者简介:张冰(1990-),男,博士研究生,主要从事统计岩石物理和地震反演研究,E-mail:usrzhb@hotmail.com
  • 基金资助:
    国家自然科学基金项目(41430322,41404090);国家自然科学基金石油化工联合基金(U1663207);“十三五”国家重大专项(2017ZX05049-002)

Fracture Properties and Anisotropic Parameters Inversion of Shales Based on Rock Physics Model

Zhang Bing1, Guo Zhiqi1, Xu Cong2, Liu Cai1, Liu Xiwu3,4,5, Liu Yuwei3,4,5   

  1. 1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China;
    2. Northeast Electric Power Design Institute Co., Ltd. of China Power Engineering Consulting Group, Changchun 130021, China;
    3. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100083, China;
    4. SinoPEC Key Laboratory of Shale Oil/Gas Exploration and Production Technology, Beijing 100083, China;
    5. SinoPEC Petroleum Exploration and Production Research Institute, Beijing 100083, China
  • Received:2017-10-26 Online:2018-07-26 Published:2018-07-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41430322, 41404090), the NSFC and SinoPEC Joict key Project (U1663207) and National Key S & T Special Project of China (2017ZX05049-002)

摘要: 针对富有机质页岩储层复杂的矿物组分与微观孔缝结构,本文提出基于岩石物理模型和改进粒子群算法的页岩储层裂缝属性及各向异性参数反演方法。应用自相容等效介质理论与Chapman多尺度孔隙理论建立裂缝型页岩双孔隙系统岩石物理模型。开发基于岩石物理模型的反演流程,引入模拟退火优化粒子群算法解决多参数同时反演问题,反演算法能够避免陷入局部极值且收敛速度快。将本文方法应用于四川盆地龙马溪组页岩气储层,反演得到的孔隙纵横比、裂缝密度等物性参数和各向异性参数与已有研究结果一致,能为页岩储层的评价提供多元化信息。

关键词: 页岩储层, 裂缝属性, 各向异性, Chapman模型, 粒子群算法, 四川盆地

Abstract: Organic-rich shale reservoirs usually have complex mineral compositions and pore system in a small scale. This study presents a workflow of the fracture properties and anisotropy parameter inversion of shales based on the rock physics model and improved particle swarm optimization algorithm. A two-pore system for fractured shales was built through applying the self-consistent equivalent medium theory and Chapman's multi-scale porosity model. This inversion workflow can be used to estimate multi-parameter simultaneously by utilizing the simulated annealing-based particle swarm optimization algorithm. The intelligence algorithm has the ability to find global optimization and fast convergence. The workflow was applied in the Longmaxi shale-gas reservoir in the Sichuan basin to estimate the aspect ratio of pores, fracture density, and anisotropy parameters. The result is consistent with the existing research and provides diversified information for the shale reservoir evaluation.

Key words: shale reservoir, fracture properties, anisotropy, Chapman's model, particle swarm optimization algorithm, Sichuan basin

中图分类号: 

  • P631.4
[1] 张广智,陈娇娇,陈怀震,等. 基于岩石物理模版的碳酸盐岩含气储层定量解释[J]. 吉林大学学报(地球科学版), 2015, 45(2):630-638. Zhang Guangzhi, Chen Jiaojiao, Chen Huaizhen, et al. Quantitative Interpretation of Carbonate Gas Reservoir Based on Rock Physics Template[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(2):630-638.
[2] 逄硕,刘财,郭智奇,等. 基于岩石物理模型的页岩孔隙结构反演及横波速度预测[J]. 吉林大学学报(地球科学版), 2017, 47(2):606-615. Pang Shuo, Liu Cai, Guo Zhiqi, et al. Estimation of Pore-Shape and Shear Wave Velocity Based on Rock-Physics Modelling in Shale[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(2):606-615.
[3] Bandyopadhyay K. Seismic Anisotropy:Geological Causes and Its Implications to Reservoir Geophysics[D]. San Francisco:Stanford University, 2009.
[4] Hornby B E, Schwartz L M, Hudson J A. Anisotropic Effective-Medium Modeling of the Elastic Properties of Shales[J]. Geophysics, 1994, 59(10):1570-1583.
[5] Sayers C M. Anisotropic Velocity Analysis[J]. Geo-physical Prospecting, 1995, 43(4):541-568.
[6] Sayers C M. Seismic Anisotropy of Shales[J]. Geo-physical Prospecting, 2005, 53(5):667-676.
[7] Kwon O, Kronenberg A K, Gangi A F, et al. Per-meability of Illite-Bearing Shale:1. Anisotropy and Effects of Clay Content and Loading[J]. Journal of Geophysical Research:Solid Earth, 2004, 109(B10):205-223.
[8] Chapman M. Frequency-Dependent Anisotropy due to Meso-Scale Fractures in the Presence of Equant Porosity[J]. Geophysical Prospecting, 2003, 51(5):369-379.
[9] Jiang M, Spikes K T. Estimation of Reservoir Pro-perties of the Haynesville Shale by Using Rock-Physics Modelling and Grid Searching[J]. Geophysical Journal International, 2013, 195:315-329.
[10] 高鹰,谢胜利. 基于模拟退火的粒子群优化算法[J]. 计算机工程与应用, 2004, 40(1):47-50. Gao Ying, Xie Shengli. Particle Swarm Optimization Algorithms Based on Simulated Annealing[J]. Computer Engineering and Applications, 2004, 40(1):47-50.
[11] Thomsen L. Weak Elastic Anisotropy[J]. Geophy-sics, 1986, 51(10):1954-1966.
[12] O'Connell R J, Budiansky B. Seismic Velocities in Dry and Saturated Cracked Solids[J]. Journal of Geophysical Research, 1974, 79(35):5412-5426.
[13] Berryman J G. Mixture Theories for Rock Properties[M]//A Handbook of Physical Constants. Washington, D C:American Geophysical Union, 1995:205-228.
[14] Dvorkin J, Nolen-Hoeksema R, Nur A. The Squirt-Flow Mechanism:Macroscopic Description[J]. Geophysics, 1994, 59(3):428-438.
[15] 兰慧田. 裂缝性孔隙介质波场模拟与频变AVO储层参数反演[D].长春:吉林大学,2014. Lan Huitian. Wave Field Modeling in Fractured Porous Media and Frequency-Dependent AVO Reservoir Parameters Inversion[D]. Changchun:Jilin University, 2014.
[16] 邓继新,王欢,周浩,等. 龙马溪组页岩微观结构、地震岩石物理特征与建模[J].地球物理学报,2015, 58(6):2123-2136. Deng Jixin, Wang Huan, Zhou Hao, et al. Microtexture, Seismic Rock Physical Properties and Modeling of Longmaxi Formation Shale[J]. Chinese Journal of Geophysics, 2015, 58(6):2123-2136.
[17] Guo Z Q, Liu C, Liu X W, et al. Research on Anisotropy of Shale Oil Reservoir Based on Rock Physics Model[J]. Applied Geophysics, 2016,13(2):382-392.
[18] Guo Z Q, Li X Y. Rock Physics Model-Based Prediction of Shear Wave Velocity in the Barnett Shale Formation[J]. Journal of Geophysics and Engineering, 2015, 12(3):527-534.
[19] 李坤,印兴耀,宗兆云. 利用平滑模型约束的频率域多尺度地震反演[J]. 石油地球物理勘探,2016, 51(4):760-780. Li Kun, Yin Xingyao, Zong Zhaoyun. Multi-Scale Seismic Inversion in Frequency Domain Based on Smoothing Model[J]. Oil Geophysical Prospecting, 2016, 51(4):760-780.
[20] Qian K, Zhang F, Chen S, et al. A Rock Physics Model for Analysis of Anisotropic Parameters in a Shale Reservoir in Southwest China[J]. Journal of Geophysics and Engineering, 2016, 13(1):19-34.
[1] 邓馨卉, 刘财, 郭智奇, 刘喜武, 刘宇巍. 济阳坳陷罗家地区各向异性页岩储层全波场地震响应模拟及分析[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1231-1243.
[2] 胡欣蕾, 吕延防, 孙永河, 孙同文. 泥岩盖层内断层垂向封闭能力综合定量评价:以南堡凹陷5号构造东二段泥岩盖层为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 705-718.
[3] 殷长春, 杨志龙, 刘云鹤, 张博, 齐彦福, 曹晓月, 邱长凯, 蔡晶. 基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 872-880.
[4] 曾昭发, 霍祉君, 李文奔, 李静, 赵雪宇, 何荣钦. 任意各向异性介质三维有限元航空电磁响应模拟[J]. 吉林大学学报(地球科学版), 2018, 48(2): 433-444.
[5] 刘忠宝, 杜伟, 高波, 胡宗全, 张钰莹, 吴靖, 冯动军. 层序格架中富有机质页岩发育模式及差异分布:以上扬子下寒武统为例[J]. 吉林大学学报(地球科学版), 2018, 48(1): 1-14.
[6] 刘丽红, 杜小弟, 徐守礼, 文华国. 四川盆地中南部寒武系白云岩特征及形成机制[J]. 吉林大学学报(地球科学版), 2017, 47(3): 775-784.
[7] 贲放, 刘云鹤, 黄威, 徐驰. 各向异性介质中的浅海海洋可控源电磁响应特征[J]. 吉林大学学报(地球科学版), 2016, 46(2): 581-593.
[8] 莫绍星, 龙星皎, 李瀛, 郑菲, 施小清, 张可霓, 赵良. 基于TOUGHREACT-MP的苏北盆地盐城组咸水层CO2矿物封存数值模拟[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1647-1658.
[9] 张中庆, 庞兵强. 随钻电磁波测井数据处理新方法[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1720-1726.
[10] 张振波,轩义华,刘宾. 基于各向异性理论的深水区地震资料叠前处理技术[J]. 吉林大学学报(地球科学版), 2014, 44(3): 1031-1038.
[11] 李继明,左三胜. 裂隙岩体岩石质量指标(RQD)的空间变化特征[J]. 吉林大学学报(地球科学版), 2014, 44(3): 946-953.
[12] 沈金松,詹林森,马超. 裂缝等效介质模型对裂缝结构和充填介质参数的适应性[J]. 吉林大学学报(地球科学版), 2013, 43(3): 993-1003.
[13] 曾琴琴,王永华,吴文贤. 二维磁异常的粒子群快速成像方法及其应用[J]. 吉林大学学报(地球科学版), 2013, 43(2): 616-622.
[14] 江思珉,王佩,施小清,郑茂辉. 地下水污染源反演的HookeJeeves吸引扩散粒子群混合算法[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1866-1872.
[15] 汪宏年, 商庆龙, 朱天竹, 李舟波. 用多分量感应资料快速重建层状地层的纵横向电阻率和水平界面深度[J]. J4, 2012, 42(4): 900-905.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!