吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (1): 91-104.doi: 10.13278/j.cnki.jjuese.201601109
韩润生1, 李波1, 倪培2, 邱文龙1, 王旭东2, 王天刚2
Han Runsheng1, Li Bo1, Ni Pei2, Qiu Wenlong1, Wang Xudong2, Wang Tiangang2
摘要:
显微红外测温是利用红外显微镜研究不透明半透明矿物的流体包裹体丰度和分布特征,并与冷热台相结合进行流体包裹体显微测温分析的一种有效的新技术。云南会泽超大型富锗银铅锌矿床是分布于川滇黔接壤区典型的会泽型(HZT)铅锌矿床。本文以该矿床的闪锌矿、方解石流体包裹体为例,应用显微红外测温技术发现闪锌矿中发育大量流体包裹体,按其相态可分为6类:纯气相(V)、富液相气液两相(L+V)、富气相气液两相(L+V)、纯液相(L)、含子矿物三相(L+V+S)、含CO2三相(LCO2+LH2O+VCO2)包裹体,而在热液方解石中仅发现富液相气液两相(L+V)、纯液相(L)包裹体。闪锌矿中的流体包裹体均一温度集中在2个区间:150~221℃和320~364℃;而盐度变化范围较大,主要集中于3个区间:12.0%~18.0%、5.0%~11.0%、1.1%~5.0%。不同世代闪锌矿流体包裹体均一温度大致反映成矿流体演化的全过程,而方解石流体包裹体均一温度主要反映成矿流体演化的中晚阶段,而且与脉石矿物(方解石)共生的闪锌矿流体包裹体均一温度也高于方解石包裹体均一温度;反映了闪锌矿流体包裹体较方解石更能反映成矿流体的信息,进一步揭示从早成矿阶段到晚成矿阶段,成矿流体大致经历了中高温-中盐度→中低温-中盐度→中低温-中低盐度的演化过程。通过压力校正后的流体包裹体捕获温度反映了早成矿阶段成矿流体呈中高温,进一步证实了该矿床并非低温矿床。通过矿床对比研究,不仅反映了该矿床明显不同于典型的MVT铅锌矿床,而且表明了显微红外测温技术为该类矿床成矿流体p-T-x条件及矿床成因的研究提供了新方法与途径,并将在金属矿床成矿流体的研究领域发挥重要作用。
中图分类号:
[1] Campbell A R, Hackbarth C J, Plumlee G S,et al. Internal Features of Ore Minerals Seen with the Infrared Microscope[J]. Economic Geology, 1984, 79:1387-1392.[2] Campbell A R,Robinson-Cook S. Infrared Fluid Inclusion Microthermometry on Coexisting Wolframite and Quartz[J]. Economic Geology, 1987, 82:1640-1645.[3] Campbell A R,Panter K S. Comparison of Fluid Inclusions in Coexisting (Cogenetic?) Wolframite, Cassiterite and Quartz from St Michel's Mount and Cligga Head, Cornwall, England[J]. Geochim. Cosmochim,Acta, 1990, 54:673-683.[4] Ni Pei, Zhu Xia, Wang Rucheng, et al. Constraining Ultrahigh-Pressure (UHP) Metamorphism and Titanium Ore Formation from an Infrared Microthermometric Study of Fluid Inclusions in Rutile from Donghai UHP Eclogites, Eastern China[J]. Geological Society of America Bulletin, 2008, 120(9/10):1296-1304.[5] 朱霞, 倪培, 黄建宝, 等. 显微红外测温技术及其在金红石矿床中的应用[J]. 岩石学报, 2007, 23(9):2052-2058. Zhu Xia, Ni Pei, Huang Jianbao, et al. Introduction to Infrared Micro-Thermometric Technique:An Example from Fluid Inclusion Study in Rutile Deposits[J]. Acta Petrologica Sinica, 2007, 23(9):2052-2058.[6] Francisco Javier Rios,Raimundo Netuno Villas,Kazuo Fuzikawa.Fluid Evolution in the Pedra Wolframite Ore Deposit, Paleoproterozoic Musa Granite, Eastern Amazon Craton, Brazil[J]. Journal of South American Earth Science, 2003, 15:787-802.[7] Kouzmanov K, Bailly L, Ramboz C,et al. Morphology, Origin and Infrared Microthermometry of Fluid Inclusions in Pyrite from the Radka EpitherBulgaria[J]. Mineralium Deposita, 2002, 37:599-613.[8] 卢焕章, 李秉伦, 沈昆,等. 流体包裹体地球化学[M]. 北京:地质出版社, 1990:56-228. Lu Huanzhang, Li Binglun, Shen Kun, et al. Geochemistry of Fluid Inclusions[M]. Beijing:Geological Publishing House, 1990:56-228.[9] Luders V,Reutel C. Fluid Inclusion Studies in Sulfo-salts from Hydrothermal Vein Deposits of the Harz Mountains by Infra-Red Microscopy[J]. Eur J Mineral, 1994, 6(1):364.[10] Luders V. Contribution of Infrared Microscopy to Fluid Inclusion Studies in some Opaque Minerals (Wolframite, Stibnite, Bournonite):Metallogenic Implications[J]. Econ Geol, 1996, 91:1462-1468.[11] Luders V, Ziemann M. Possibilities and Limits of Lnfrared Light Microthermometry Applied to Studies of Pyrite-Hosted Fluid Inclusions[J]. Chemical Geology, 1999, 154:169-178.[12] Lindaas S E, Kuliz J,Campbell A R. Near-Infrared Observation and Microthermometry of Pyrite-Hosted Fluid Inclusions[J]. Economic Geology, 2002, 97:603-618.[13] 韩润生, 陈进, 黄智龙,等. 构造成矿动力学及隐伏矿定位预测:以云南会泽铅锌(银、锗)矿床为例[M]. 北京:科学出版社, 2006:1-200. Han Runsheng, Chen Jin, Huang Zhilong, et al. Dynamics of Tectonic Ore-Forming Process and Localization-Prognosis of Concealed Orebodies:As Exemplified by the Huize Surper-Large Zn-Pb-(Ag-Ge) District, Yunnan[M]. Beijing:Science Press, 2006:1-200.[14] 陈士杰. 黔西滇东北铅锌矿床的沉积成因探讨[J]. 贵州地质, 1984, 8(3):35-39. Chen Shijie. A Discussion on the Sedimentary Origin of Pb-Zn Deposits in Western Guizhou and Nor-theastern Yunnan[J]. Journal of Guizhou Geology, 1984, 8(3):35-39.[15] 陈进. 麒麟厂铅锌硫化物矿床成因及成矿模式探讨[J]. 有色金属矿产与勘查, 1993(2):85-90. Chen Jin. A Discussion on the Genesis and Metallogenic Model of the Qilinchang Pb-Zn Sulfide Deposit[J]. Journal of Non-Ferrous Mineral Resources and Exploration, 1993(2):85-90.[16] 韩润生, 刘丛强, 黄智龙,等. 论云南会泽富铅锌矿床成矿模式[J].矿物学报, 2001, 21(4):674-680. Han Runsheng, Liu Congqiang, Huang Zhilong, et al. Study on the Metallogenic Model of the Huize Pb-Zn Deposit in Yunnan Province[J]. Acta Minera-logica Sinica, 2001, 21(4):674-680.[17] Han Runsheng, Liu Congqiang, Huang Zhilong, et al. Sources of Ore-Forming Fluid in Huize Zn-Pb-(Ag-Ge) District, Yunnan, China[J]. Acta Geologica Sinica, 2004, 78(2):583-591.[18] Han Runsheng, Liu Congqiang, Huang Zhilong, et al. Geological Featares and Origin of the Huize Carbonate-Hosted Zn-Pb-(Ag) District, Yunnan[J]. Ore Geology Reviews, 2007, 31:360-383.[19] Han Runsheng, Zou Haijun, Hu Bin, et al. Features of Fluid Inclusions and Sources of Ore-Forming Fluid in the Maoping Carbonate-Hosted Zn-Pb-(Ag-Ge) Deposit, Yunnan, China[J]. Acta Petrological Sinica, 2007, 23(9):2109-2118.[20] 韩润生, 胡煜昭, 王学琨, 等. 滇东北富锗银铅锌多金属矿集区矿床模型[J]. 地质学报, 2012, 86(2):280-294. Han Runsheng,Hu Yuzhao, Wang Xuekun, et al. Mineralization Model of Rich Ge-Ag-Bearing Zn-Pb Polymetallic Deposit Concentrated District in Nor-theastern Yunnan, China[J]. Acta Geologica Sinica, 2012, 86(2):280-293.[21] Huang Zhilong, Li Wenbo, Chen Jin, et al. C and O Isotope Constraints on the Mantle Fluids Join the Mineralization of the Huize Super-Large Pb-Zn Deposits, Yunnan Province, China[J]. J Geochem Explor, 2003(78/79):637-642.[22] 黄智龙, 陈进, 韩润生, 等. 云南会泽超大型铅锌矿床地球化学及成因:兼论峨眉山玄武岩与铅锌成矿的关系[M].北京:地质出版社,2004:1-187. Huang Zhilong,Chen Jin,Han Runsheng,et al.Geo-chemistry and Ore Gensis of Huize Super-Large Lead-Zinc Deposit, Yunnan Province:Concurrently Discuss the Relationship Between Emeishan Basalt and Lead-Zinc Deposits[M]. Beijing:Geological Publishing House, 2004:1-187.[23] 柳贺昌,林文达. 滇东北铅锌银矿床规律研究[M]. 昆明:云南大学出版社, 1999:1-468. Liu Hechang, Lin Wenda. Metallogenic Rules of Zn-Pb-(Ag) Deposits in Northeastern Yunnan[M]. Kunming:Yunnan University Publishing House, 1999:1-468.[24] 张位及. 试论滇东北铅锌矿床的沉积成因和成矿规律[J]. 地质与勘探, 1984(7):11-16. Zhang Weiji. A Preliminary Discussion on the Sedimentary Origin and Metallogenic Rule of Pb-Zn Deposits in Northeastern Yunnan[J]. Journal of Geology and Exploration, 1984(7):11-16.[25] 赵准. 滇东、滇东北地区铅锌矿床的成矿模式[J]. 云南地质, 1985, 14(4):350-354. Zhao Zhun. Metallogenic Model of Pb-Zn Deposits in Northeastern Yunnan[J]. Journal of Yunnan Geology, 1985, 14(4):350-354.[26] Zhou Chaoxian, Wei Chunsheng, Guo Jiyun, et al. The Source of Metals in the Qilingchang Pb-Zn Deposit, Northeastern Yunnan, China:Pb-Sr Isotope Constraints[J]. Econ Geol, 2011, 96:583-598.[27] 王国光, 倪培, 赵葵东, 等. 江西银山铅锌矿床闪锌矿与石英流体包裹体的对比研究[J]. 岩石学报, 2011, 27(5):1387-1396. Wang Guoguang, Ni Pei, Zhao Kuidong, et al. Comparison of Fluid Inclusions in Coexisting Sphalerite and Quartz from Yinshan Deposit, Dexing, Northeast Jiangxi Province[J].Acta Petrologica Sinica, 2011, 27(5):1387-1396.[28] 卢焕章, 范宏瑞, 倪培, 等. 流体包裹体[M]. 北京:科学出版社, 2004:132-143. Lu Huanzhang, Fan Hongrui, Ni Pei, et al. Fluid Inclusions[M]. Beijing:Science Press, 2004:132-143. |
[1] | 张艳, 韩润生, 魏平堂, 邱文龙. 云南会泽矿山厂铅锌矿床流体包裹体特征及成矿物理化学条件[J]. 吉林大学学报(地球科学版), 2017, 47(3): 719-733. |
[2] | 陈随海, 韩润生, 申屠良义, 吴鹏, 邱文龙, 文德潇. 滇东北矿集区昭通铅锌矿区蚀变岩分带及元素迁移特征[J]. 吉林大学学报(地球科学版), 2016, 46(3): 711-721. |
|