吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (1): 80-90.doi: 10.13278/j.cnki.jjuese.201601108
王可勇, 付丽娟, 韦烈民, 王志高
Wang Keyong, Fu Lijuan, Wei Liemin, Wang Zhigao
摘要:
榛子沟铅锌矿矿床是青城子矿田代表性矿床之一,矿体赋存于高家峪组和大石桥组之中,呈层状、似层状和脉状产出,受地层、岩浆和构造联合控制。矿床的形成经历了海底喷流、变质变形和热液叠加三期成矿作用,其中热液叠加成矿作用对脉状矿体的形成与层状矿体的局部热液改造起到了重要作用,可划分为Ⅰ黄铁矿-方铅矿-闪锌矿-石英和Ⅱ黄铁矿-方铅矿-石英-方解石两个阶段。流体包裹体和碳、氢、氧同位素研究表明:I阶段石英中发育气液两相和少量的富气相、CO2三相流体包裹体,成矿流体属中高温、低盐度、低密度的CO2-H2O-NaCl体系热液,含H2O、CO2、CH4和N2,流体包裹体的δDH2O-SMOW为-96.5‰和-95.4‰、δ18OH2O-SMOW为-0.62‰和0.04‰、δ13C为-4.8‰和-4.4‰,具有大气降水与岩浆水混合流体的特点;Ⅱ阶段石英中主要发育气液两相包裹体,成矿流体属低温、低盐度和低密度的H2O-NaCl体系热液,流体包裹体δDH2O-SMOW为-88.4‰~-80.0‰、δ18OH2O-SMOW为-7.93‰~-5.57‰,具有大气降水的特点,δ13C为-12.6‰~-7.9‰,具有岩浆水特点。综合分析表明,热液叠加成矿期成矿流体来源于岩浆水与大气降水的混合热液,且成矿后期大气降水的混入比例增加。
中图分类号:
[1] 张朋.浅谈岩浆热液活动在青城子矿床中的成矿作用[J].中国高新技术企业,2009(7):127-128. Zhang Peng.Mineralization of Magmatic Hydrothermal in Qingchengzi Ore Deposits[J].Chinese Hi-Tech Enterprises,2009(7):127-128.[2] 刘国平.辽宁青城子矿田的同位成矿作用[J].有色金属矿产与勘查,1999,8(5):277-282. Liu Guoping.Isospatial Metallogenesis in Qingchengzi Ore Fild,Liaoning[J]. Geological Exploration for Non Ferrous Metals,1999,8(5):277-282.[3] 刘红霞,孔含泉,杨言辰.辽宁小佟家堡子金矿床地质特征及成因研究[J].黄金,2006,27(5):13-16. Liu Hongxia,Kong Hanquan,Yang Yanchen.Geologic Characteristics and Genesis of Xiaotongjiapuzi Gold Deposit,Liaoning Province[J].Gold,2006,27(5):13-16.[4] 刘志远,徐学纯,田豫才,等.辽东青城子地区喷流-沉积成矿作用与金银多金属矿化的关系[J]. 矿床地质, 2007, 26(5):563-571. Liu Zhiyuan,Xu Xuechun,Tian Yucai,et al.Relationship Between Sedimentation-Exhalation Ore-Forming Process and Gold-Silver Polymetallic Mineralization in Qingchengzi Area,Liaoning Province[J].Mineral Depodits,2007,26(5):563-571.[5] 王秀福,刘培栋,杨桂莲,等.青城子铅锌矿田地质特征[J].有色矿冶,2010,26(2):2-21. Wang Xiufu,Liu Peidong,Yang Guilian,et al.Study on Process Mineralogy for a Certain Slag[J]. Non-Ferrous Mining and Metallurgy,2010,26(2):2-21.[6] 董存杰.青城子锌金银多金属矿田矿床地质特征及成矿系统分析[D]. 北京:中国地质大学,2012. Dong Cunjie.Geological Characteristics of the Deposits and Analysis of the Mineralization System of Qingchengzi Pb-Zn-Au-Ag Polymetallic Ore Field[D]. Beijing:China University of Geosciences,2012.[7] 张秋生.中国早前寒武纪地质及成矿作用[M]. 长春:吉林人民出版社,1984. Zhang Qiusheng.Chinese Early Precambrian Geology and Mineralization[M].Changchun:Jilin People's Publishing House,1984.[8] 孙立民.青城子铅锌矿田闪锌矿特征及意义[J].辽宁地质,1997(3):210-217. Sun Limin.Characteristics and Significance of Sphalerite Qingchengzi Pb-Zn Ore-Field[J].Liaoning Geology,1997(3):210-217.[9] 李基宏.辽宁青城子铅锌金银矿集区成矿条件与成矿预测[D].长春:吉林大学,2005. Li Jihong.Study on Ore-Forming Conditions and Mineral Resource Assessment of Lead-Zinc-Silver-Gold Metallogenic Belt in Qingchenzi,Liaoning Province[D].Changchun:Jilin University,2005.[10] 代军治.辽宁青城子地区金、银矿床成矿流体特征及成因探讨[D].长春:吉林大学,2005. Dai Junzhi. Characteristics of Ore-Forming and Discussion on the of Au, Ag Deposits in Qingchengzi Region,Liaoning Province[D].Changchun:Jilin University,2005.[11] 刘洪津. 青城子铅锌矿田及其外围金银矿床成生关系研究[J]. 矿产与地质,2012(6):476-479. Liu Hongjin. The Relationship Between Students and Research into the Qingchengzi Pb-Zn Orefield and Its Peripheral Gold Silver Deposit[J].Mineral Resources and Geology,2012(6):476-479.[12] Taylor H P. The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition[J].Economic Geology,1997,69:843-883.[13] Clayton R N, O'neil J R, Mayeda T K. Oxygen Isotope Exchange Between Quartz and Water[J].Journal of Geophysical Research,1972,77:3057-3067.[14] 张理刚.稳定同位素在地质科学中的应用[M].西安:陕西科学技术出版社,1985. Zhang Ligang.The Application of the Stable Isotope to Geology[M].Xi'an:Shaanxi Science and Technology Press,1985.[15] 郑永飞,陈江峰.稳定同位素地球化学[M].北京:科学出版社,2000. Zheng Yongfei,Chen Jiangfeng. The Application of the Stable Isotope to Geology[M].Beijing:Science Press,2000.[16] Bodnar R J.Revised Equation and Table for Determining the Freezing Point Depression of H2O-NaCl Solution[J].Geochimica et Cosmochimica Acta,1993,57(3):683-684.[17] 李文昌,尹光侯,余海军,等. 云南普朗斑岩型铜矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版),2013,43(5):1436-1447. Li Wenchang,Yin Guanghou,Yu Haijun,et al.Cha-racteristics of the Ore-Forming Fluid and Genesis of the Pulang Copper Deposit in Yunnan Province[J].Journal of Jilin University(Earth Science Edition),2013,43(5):1436-1447.[18] 王承洋,王可勇,周向斌,等. 内蒙古东山湾钨钼多金属矿床成矿流体地球化学特征及成因[J]. 吉林大学学报(地球科学版),2015,45(3):759-771. Wang Chengyang,Wang Keyong,Zhou Xiangbin,et al.Geochemical Characterists of Ore-Forming Fluid and Genesis of Dongshanwan Tungesten-Molybdenum Polymetallic Deposit in Inner Mongolia[J]. Journal of Jilin University(Earth Science Edition),2015,45(3):759-771. |
[1] | 李向文, 张志国, 王可勇, 孙加鹏, 杨吉波, 杨贺. 大兴安岭北段宝兴沟金矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1071-1084. |
[2] | 李文强, 郭巍, 孙守亮, 杨绪海, 刘帅, 侯筱煜. 塔里木盆地巴楚—麦盖提地区古生界油气藏成藏期次[J]. 吉林大学学报(地球科学版), 2018, 48(3): 640-651. |
[3] | 陈瑞莉, 陈正乐, 伍俊杰, 梁志录, 韩凤彬, 王永, 肖昌浩, 韦良喜, 沈滔. 甘肃合作早子沟金矿床流体包裹体及硫铅同位素特征[J]. 吉林大学学报(地球科学版), 2018, 48(1): 87-104. |
[4] | 和成忠, 张德会, 吴鸣谦, 夏岩, 张荣臻, 胡铁军. 辽宁青城子姚家沟斑岩型钼矿流体包裹体[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1717-1731. |
[5] | 门兰静, 孙景贵, 王好均, 柴鹏, 赵克强, 古阿雷, 刘城先. 延边浅成高硫化热液金矿床的成矿流体起源与演化:以杜荒岭和九三沟矿床为例[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1365-1382. |
[6] | 陈晶源, 王长明, 贺昕宇, 陈良, 吴彬, 王乔, 张端, 姚恩亚, 董猛猛. 河南瓦房铅锌矿床地质、流体包裹体和稳定同位素特征[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1383-1404. |
[7] | 张锦让, 温汉捷, 邹志超. 滇西北兰坪盆地金满脉状铜矿床成矿流体特征及其成矿意义[J]. 吉林大学学报(地球科学版), 2017, 47(3): 706-718. |
[8] | 张艳, 韩润生, 魏平堂, 邱文龙. 云南会泽矿山厂铅锌矿床流体包裹体特征及成矿物理化学条件[J]. 吉林大学学报(地球科学版), 2017, 47(3): 719-733. |
[9] | 赵彦德, 齐亚林, 罗安湘, 程党性, 李继宏, 黄锦绣. 应用流体包裹体和自生伊利石测年重构鄂尔多斯盆地侏罗系油藏烃类充注史[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1637-1648. |
[10] | 王力, 孙丽伟. 山东省寺庄金矿床成矿流体特征[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1697-1710. |
[11] | 张延军, 孙丰月, 李碧乐, 李良, 陈扬. 青海湟中县三岔金矿流体包裹体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1342-1353. |
[12] | 王晰, 段明新, 任云生, 侯召硕, 孙德有, 郝宇杰. 内蒙古额尔古纳地区八大关铜钼矿床流体包裹体特征与成矿时代[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1354-1367. |
[13] | 吴海枝, 韩润生, 吴鹏. 楚雄盆地六苴砂岩型铜矿床成矿流体性质及演化[J]. 吉林大学学报(地球科学版), 2016, 46(2): 398-411. |
[14] | 韩润生, 李波, 倪培, 邱文龙, 王旭东, 王天刚. 闪锌矿流体包裹体显微红外测温及其矿床成因意义——以云南会泽超大型富锗银铅锌矿床为例[J]. 吉林大学学报(地球科学版), 2016, 46(1): 91-104. |
[15] | 贾福聚, 燕永锋, 伍伟, 刘晓玮. 云南老君山锡多金属成矿区硫、铅、氢、氧同位素地球化学[J]. 吉林大学学报(地球科学版), 2016, 46(1): 105-118. |
|