吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (1): 163-174.doi: 10.13278/j.cnki.jjuese.201601114

• 地质与资源 • 上一篇    下一篇

中中新世以来阿尔金断裂走滑未造成柴达木盆地整体旋转

裴军令1, 周在征1, 李海兵2, 孙知明1   

  1. 1. 中国地质科学院地质力学研究所/国土资源部古地磁与古构造重建重点实验室, 北京 100081;
    2. 中国地质科学院地质研究所/大陆动力学国家重点实验室, 北京 100037
  • 收稿日期:2015-12-25 出版日期:2016-01-26 发布日期:2016-01-26
  • 作者简介:裴军令(1977),男,副研究员,主要从事古地磁与构造地质学研究工作,E-mail:jlpei@qq.com
  • 基金资助:

    中国地质调查局基础研究项目(1212011121267,1212011120964);国家自然科学基金项目(41172177)

Strike-Slip of Altyn Tagh Didn't Result in Qaidam Basin Rotation Since Middle-Miocene

Pei Junling1, Zhou Zaizheng1, Li Haibing2, Sun Zhiming1   

  1. 1. Institute of Geomechanics, Chinese Academy of Geological Sciences/Key Laboratory of Paleomagnetism and Tectonic Reconstruction, Ministry of Land and Resources, Beijing 100081, China;
    2. Institute of Geology, Chinese Academy of Geological Sciences/State Key Laboratory of Continental Tectonic and Dynamics, Beijing 100037, China
  • Received:2015-12-25 Online:2016-01-26 Published:2016-01-26
  • Supported by:

    Supported by the China Geological Survey Projects (1212011121267, 1212011120964) and the National Natural Science Foundation of China (41172177)

摘要:

通过柴达木盆地南八仙剖面磁性地层学研究,建立了部分上油砂山组磁极性序列,认为该剖面时代为7.5~9.0 Ma。从320块样品的古地磁数据分析,揭示了一组高温特征剩磁分量,在95%置信度下通过倒转检验(B级),说明这组高温分量很可能代表岩石形成时的原生剩磁,其特征剩磁方向为:地理坐标下为Dg=358.5°, Ig=40.5°, k=28.5,α95=4.2,层面坐标下为Ds=1.0°, Is=41.5°, k=34.0,α95=3.8;相应的极位置为λp=75.9°N, φp=270.5°E, dp=2.8°, dm=4.6°。通过与同时代柴达木盆地及邻区的古地磁极对比,说明中中新世以来柴达木地块整体上没有经历明显旋转运动,阿尔金断裂活动致使肃北等毗邻断裂带地区发生了构造旋转。

关键词: 柴达木盆地, 古地磁, 阿尔金断裂, 磁性地层, 构造旋转, 中新世

Abstract:

Based on the magnetostratigraphic study at Nanbaxian section, Qaidam basin, a magnetic polarity sequence of Shangyoushashan Formation has been established. The magnetostratigraphic result suggests the age of 7.5-9.0 Ma. A stable high temperature characteristic remanence component is isolated by stepwise thermal demagnetization from 320 samples through a positive reversal test at the 95% confidence level, which may possibly represent the rock's primary remanence. The mean direction is Dg=358.5°, Ig=40.5°, k=28.5,α95=4.2, Ds=1.0°, Is=41.5°, k=34.0,α95=3.8,corresponding to a paleopole at λp=75.9°N, φp=270.5°E, dp=2.8°, dm=4.6°. In comparison of this paleomagnetic poles from the Qaidam basin with those from adjacent region, no tectonic rotation in Qaidam basin has been identified; however the tectonic rotation of Subei basin has been occurred and resulted from the left-slip of Altyn Tagh fault since Middle-Miocene.

Key words: Qaidam basin, paleomagnetism, Altyn Tagh, magnetostratigraphy, tectonic rotation, Miocene

中图分类号: 

  • P539.3

[1] 李海兵,杨经绥,许志琴,等. 阿尔金断裂带对青藏高原北部生长、隆升的制约[J]. 地学前缘, 2006, 13(4):59-79. Li Haibing, Yang Jingsui, Xu Zhiqin, et al. The Constraint of the Altyn Tagh Fault System to the Growth and Rise of the Northern Tibetan Plateau[J]. Earth Science Frontiers, 2006, 13(4):59-79.

[2] 刘永江, 葛肖虹, 叶慧文, 等.晚中生代以来阿尔金断裂的走滑模式[J].地球学报, 2001, 22(1):23-28. Liu Yongjiang, Ge Xiaohong, Ye Huiwen, et al. Strike-Slip Model for Altyn Tagh Fault Developed Since Late Mesozoic[J]. Acta Geoscientia Sinica, 2001,22(1):23-28.

[3] Liu Yongjiang, Genser J, Ge Xiaohong, et al.40Ar/39Ar Age Evidence for Altyn Fault Tectonic Activities in Western China[J]. Chinese Science Bulletin, 2003, 48(18):2024-2030.

[4] 葛肖虹, 刘永江, 任收麦, 等. 对阿尔金断裂科学问题的再认识[J]. 地质科学, 2001, 36(3):319-325. Ge Xiaohong, Liu Yongjiang, Ren Shoumai, et al. Re-Understanding on Some Adademic Problems of the Altun Fault[J]. Chinese Journal of Geology, 2001, 36(3):319-325.

[5] Frost G M, Coe R S, Meng Z, et al. Preliminary Early Cretaceous Paleomagnetic Results from the Gansu Corridor, China[J]. Earth and Planetary Science Letters, 1995, 129:217-232.

[6] Halim N, Cogn J P, Chen Y, et al. New Cretaceous and Early Tertiary Paleomagnetic Results from Xining-Lanzhou Basin, Kunlun and Qiangtang Blocks, China:Implications on the Geodynamic Evolution of Asia[J]. J Geophys Res, 1998, 103(B9):21025-21045.

[7] Cognè J P, Halim N, Chen Y, et al. Resolving the Problem of Shallow Magnetizations of Tertiary Age in Asia:Insights from Paleomagnetic Data from the Qiangtang, Kunlun,and Qaidam Block (Tibet, China), and a New Hypothesis[J]. J Geophys Res, 1999, 104:17715-17734.

[8] 李朋武, 崔军文, 高锐, 等. 柴达木地块新生代古地磁新数据及其构造意义[J]. 地球学报, 2001, 22(6):563-568. Li Pengwu, Cui Junwen, Gao Rui, et al. New Cenozoic Paleomagnetic Data from Qaidam Massif and Their Tectonic Implications[J]. Acta Geoscientia Sinica, 2001, 22(6):563-568.

[9] Tapponnier P, Meyer B, Avouac J P, et al. Active Thrusting and Folding in the Qilian Shan, and Decoupling Between Upper Crust and Mantle in Northeastern Tibet[J]. Earth and Planetary Science Letters, 1990, 97(3/4), 382-383,387-403.

[10] 杨用彪, 孟庆泉, 宋春晖,等. 柴达木盆地东北部新近纪构造旋转及其意义[J]. 地质论评, 2009, 55(6):775-784. Yang Yongbiao, Meng Qingquan, Song Chunhui, et al. Neogene Tectonic Rotation of the NE Qaidam Basin and Its Implication[J]. Geological Review, 2009, 55(6):775-784.

[11] Dupont Nivet G, Butler R F, Yin An, et al. Paleomagnetism Indicates no Neogene Rotation of the Qaidam Basin in North Tibet During Indo-Asian Collision[J]. Geophys, 2002, 30(3):263-266.

[12] Dupont Nivet G, Butler R F, Yin An, et al. Paleomagnetism Indicates no Neogene Rotation of the Northeastern Tibetan Plateau[J/OL]. J Geophys Res, 2003, 108(B8):2386.doi:10. 1029/2003JB002399.

[13] Sun Zhiming, Yang Zhenyu, Pei Junling, et al. Magnetostratigraphy of Paleogene Sediments from Northern Qaidam Basin, China:Implications for Tectonic Uplift and Block Rotation in Northern Tibetan Plateau[J]. Earth Planet Sci Lett, 2005, 237:635-646.

[14] 孙知明, 李海兵,裴军令,等. 阿尔金断裂走滑作用对青藏高原东北缘山脉形成的古地磁证据[J]. 岩石学报,2012,28(6):1928-1936. Sun Zhiming, Li Haibing, Pei Junling, et al. Strike-Slip Movement of the Altyn Tagh Fault and Implications for Mountain Formation Inferred from Paleomagnetic Data in Northeastern Tibetan Plateau[J]. Acta Petrologica Sinica, 2012,28(6):1928-1936.

[15] 青海省地质矿产局. 青海省区域地质志[M]. 北京:地质出版社, 1991:662. Qinghai Bureau of Geology and Mineral Resources (QBGMR). Regional Geology of the Qinghai Province[M].Beijing:Geological Publishing House, 1991:662.

[16] Kirschvink J L. The Least-Square Line and Plane and Analysis of Paleomagnetic Data[J]. Geophys J R Astron Soc, 1980, 62:699-718.

[17] Fisher R A. Dispersion on a Sphere[J]. Proc R Soc London, 1953, 217:295-305.

[18] Enkin R J, Yang Z Y, Chen Y, et al. Paleomagnetic Constraints on the Geodynamic History of the Major Blocks of China from the Permian to the Present[J]. J Geophys Res,1992, 97:13953-13989.

[19] Cogné J P. PaleoMac:A Macintosh T M Application for Treating Paleomagnetic Data and Making Plate Reconstructions[J]. Geochem·Geophys·Geosyst,2003, 4(1), 1007. doi:10.1029/2001GC000227.

[20] McFadden P L, McElhinny M W. Classification of the Reversals Test in Palaeomagnetism Geophys[J]. J Int,1990, 103:725-729.

[21] Gradstein F M G,Ogg J G, Smith A G,et al. A New Geological Time Scale, with Special Reference to Precambrian and Neogene[J]. Episodes, 2004, 27(2):83-100.

[22] Fang Xiaomin, Zhang Weilin, Meng Qingquan, et al. High-Resolution Magnetostratigraphy of the Neogene Huaitoutala Section in the Eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and Its Implication on Tectonic Uplift of the NE Tibetan Plateau[J]. Earth and Planetary Science Letters, 2007, 258:293-306.

[23] Lu Haijian, Xiong Shangfa. Magnetostratigraphy of the Dahonggou Section, Northern Qaidam Basin and Its Bearing on Cenozoic Tectonic Evolution of the Qilian Shan and Altyn Tagh Fault[J]. Earth and Planetary Science Letters, 2009, 288:539-550.

[24] Besse J, Courtillot V. Apparent and True Polar Wander and Geometry of the Geomagnetic Field over the Last 200 Myr[J]. J Geophys Res, 2002, 107(B11):101029-101060.

[25] Chen Y, Gilder S, Halim N, et al. New Paleomagnetic Constraints on Central Asian Kinematics:Displacement Along the Altyn Tagh Fault and Rotation of the Qaidam Basin[J]. Tectonics, 2002, 21(5):1042. doi:10. 1029/2001TC 901030.

[26] 张涛, 宋春晖,王亚东,等. 柴达木盆地西部地区晚新生代构造变形及其意义[J]. 地学前缘,2012, 19(5):312-321. Zhang Tao, Song Chunhui, Wang Yadong, et al. The Late Cenozoic Tectonic Deformation in the Western Qaidam Basin and Its Implications[J]. Earth Science Frontiers, 2012, 19(5):312-321.

[27] Chang Hong, Ao Hong, An Zhisheng, et al. Magnetostratigraphy of the Suerkuli Basin Indicates Pliocene (3.2 Ma) Activity of the Middle Altyn Tagh Fault, Northern Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2012, 44:169-175.

[28] Gilder S A, Chen Y, Sevket S. Oligo-Miocene Magnetostratigraphy and Rock Magnetism of the Xishuigou Section, Subei (Gansu Province, Western China) and Implications for Shallow Inclinations in Central Asia[J]. J Geophys Res,2001, 106:30505-30522.

[29] Wang Yadong, Zheng Jianjing, Zhang Weilin, et al. Cenozoic Uplift of the Tibetan Plateau:Evidence from the Tectonic Sedimentary Evolution of the Western Qaidam Basin[J]. Geoscience Frontiers, 2012, 3(2):175-187.

[30] Sun Jimin, Zhu Rixiang, An Zhisheng. Tectonic Uplift in the Northern Tibetan Plateau Since 13.7 Ma ago Inferred from Molasses Deposits Along the Altyn Tagh Fault[J]. Earth Planet Science Letters,2005, 235:641-653.

[31] Zhang Weilin, Fang Xiaomin, Song Chunhui, et al. Late Neogene Magnetostratigraphy in the Western Qaidam Basin (NE Tibetan Plateau) and Its Constraints on Active Tectonic Uplift and Progressive Evolution of Growth Strata[J]. Tectonophysics, 2013, 599:107-116.

[32] Li T D. New Progress in the Geoscience Study of the Qinghai-Tibet Plateau[J]. Geological Bulletin, 2002, 21:370-376.

[33] 陈正乐, 王小凤, 冯夏红, 等. 青藏高原北缘山脉隆升时限的同位素证据[J]. 吉林大学学报(地球科学版), 2003, 23(3):270-275. Chen Zhengle, Wang Xiaofeng, Feng Xiahong, et al. New Evidence from Stable Isotope for the Uplift of Mountains in Northern Edge of the Qinghai-Tibetan Plateau[J]. Journal of Jilin University(Earth Science Edition), 2003,23(3):270-275.

[34] 王亚东, 刘永江, 常丽华, 等. 沉积物粒度分析在阿尔金山隆升研究中的应用[J].吉林大学学报(地球科学版), 2005, 35(2):155-162. Wang Yadong, Liu Yongjiang, Chang Lihua, et al. Application of Sediment Grain Size Analyse Researched on the Uplift of Altyn[J]. Journal of Jilin University(Earth Science Edition), 2005, 35(2):155-162.

[35] 郭新转, 刘永江, 葛肖虹, 等. 柴西红三旱一号地区新生代砂岩成分分析及其区域构造意义[J].吉林大学学报(地球科学版), 2006, 36(2):194-201. Guo Xinzhuan, Liu Yongjiang, Ge Xiaohong, et al. The Analyses of Cenozoic Sand Stone Component in Hongsanhan No.1 Area and Its Tectonic Implications[J]. Journal of Jilin University(Earth Science Edition), 2006, 36(2):194-201.

[36] 张志城, 郭召杰, 李建峰, 等. 阿尔金断裂带中段中新生代隆升历史分析:裂变径迹年龄制约[J]. 第四纪研究, 2012, 32(3):499-509. Zhang Zhicheng, Guo Zhaojie, Li Jianfeng, et al. Mesozoic and Cenozoic Uplift-Denudation Along the Altyn Tagh Fault, Northwestern China:Constraints from Apatite Fission Track Data[J].Quaternary Sciences, 2012, 32(3):499-509.

[37] 任收麦,葛肖虹, 刘永江,等. 柴达木盆地北缘晚中生代新生代构造应力场:来自构造节理分析的证据[J]. 地质通报, 2009, 28(7):877-887. Ren Shoumai, Ge Xiaohong, Liu Yongjiang, et al. The Stress Field of Late Mesozoic-Cenozoic Tectonics in the Northern Qaidam Basin, Northwest China:Evidences from the Analysis of Joints Data[J].Geological Bulletin of China, 2009, 28(7):877-887.

[38] 尹成明, 任收麦, 田丽艳. 阿尔金断裂对柴达木盆地西南地区的影响:来自构造节理分析的证据[J]. 吉林大学学报(地球科学版), 2011, 41(3):724-733. Yin Chengming, Ren Shoumai, Tian Liyan. Effect of Altyn Tagh Fault to Southwest Qaidam Basin:Evidences from Analysis of Joints Data[J]. Journal of Jilin University(Earth Science Edition), 2011, 41(3):724-733.

[39] 刘志宏, 王芃, 刘永江, 等. 柴达木盆地南翼山-尖顶山地区构造特征及变形时间的确定[J]. 吉林大学学报(地球科学版), 2009, 39(5):796-802. Liu Zhihong, Wang Peng, Liu Yongjiang, et al. Structural Features and Determination of Deformation Time in the Nanyishan-Jiandingshan Area of Qaidam Basin[J]. Journal of Jilin University(Earth Science Edition), 2009, 39(5):796-802.

[40] 吴怀春,张世红,韩以贵. 白垩纪以来中国西部地体运动的古地磁证据和问题[J]. 地学前缘, 2002, 9(4):355-368. Wu Huaichun, Zhang Shihong, Han Yigui. The Terranes Motion in Western China:Paleomagnetic Evidences and Their Problems[J]. Earth Science Frontiers, 2002, 9(4):355-368.

[41] Tan X, Kodama K P, Lin H, et al. Paleomagnetism and Magnetic Anisotropy of Cretceous Red Beds from the Tarim Basin, Northwewt China:Evidence for a Rock Magnetic Cause of Anomalously Shallow Paleomagnetic Inclinations from Central Asia[J]. J Geophys Res,2003, 108(B2), 2107. doi:10.1029/2001JB001608.

[42] Yan Maodu, Van der Voo R, Tauxe L, et al. Shallow Bias in Neogene Paleomagnetic Directions from the Guide Basin, NE Tibet, Caused by Inclination Error[J]. Geophys J Int,2005, 163:944-947.

[1] 田敏, 董春梅, 林承焰, 柴小颖, 王丽娟. 柴达木盆地涩北二号生物气田砂体产能分类评价[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1060-1069.
[2] 韩朋, 翟云峰, 栗粲圪, 张运, 杨会会, 靳春胜. 末次间冰期以来洛川黄土天然剩磁记录的可靠性[J]. 吉林大学学报(地球科学版), 2017, 47(3): 793-806.
[3] 安纯志, 杨振宇, 仝亚博, 李晨皓, 王恒, 高亮, 韩志锐, 徐颖超. 印支地块思茅地区始新统磁倾角偏低现象及其构造意义[J]. 吉林大学学报(地球科学版), 2017, 47(2): 511-525.
[4] 巨银娟, 张小莉, 张永庶, 陈琰. 柴达木盆地昆北地区基岩储层裂缝特征[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1660-1671.
[5] 朱超, 夏志远, 王传武, 宋光永, 魏学斌, 王鹏, 王海峰, 王波. 致密油储层甜点地震预测[J]. 吉林大学学报(地球科学版), 2015, 45(2): 602-610.
[6] 王海峰,韩玉林,朱克超,易亮,邓希光,刘广虎,任江波. 东太平洋克拉里昂-克里帕顿断裂带WPC1101沉积柱样磁性地层及沉积环境[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1892-1905.
[7] 路俊刚,姚宜同,王力,陈世加,汪立群,管俊亚,张焕旭,唐海评. 柴达木盆地跃进斜坡区油源判识与原油勘探方向[J]. 吉林大学学报(地球科学版), 2014, 44(3): 730-740.
[8] 宋春彦, 王剑, 付修根, 冯兴雷, 陈明, 何利. 青藏高原羌塘盆地晚三叠世古地磁数据及其构造意义[J]. J4, 2012, 42(2): 526-535.
[9] 高军平, 方小敏, 宋春晖, 李生喜, 薛建平. 青藏高原北部中-新生代构造-热事件:来自柴西碎屑磷灰石裂变径迹的制约[J]. J4, 2011, 41(5): 1466-1475.
[10] 尹成明, 任收麦, 田丽艳. 阿尔金断裂对柴达木盆地西南地区的影响--来自构造节理分析的证据[J]. J4, 2011, 41(3): 724-734.
[11] 李雄炎, 李洪奇, 阴平, 陈亦寒, 周金煜. 柴达木盆地三湖地区第四系低饱和度气层的成因机理[J]. J4, 2010, 40(6): 1241-1247.
[12] 刘志宏, 王芃, 赵呈祥, 沙茜, 周飞. 柴达木盆地北缘白垩纪挤压构造的发现及其地质意义[J]. J4, 2010, 40(5): 979-985.
[13] 刘志宏, 王芃, 刘永江, 赵呈祥, 高军义, 万传彪. 柴达木盆地南翼山-尖顶山地区构造特征及变形时间的确定[J]. J4, 2009, 39(5): 796-802.
[14] 李朋武, 高锐, 管烨, 李秋生. 古亚洲洋和古特提斯洋的闭合时代--论二叠纪末生物灭绝事件的构造起因[J]. J4, 2009, 39(3): 521-527.
[15] 尹成明,李伟民,R. Andrea,刘永江,陈元忠,巩庆林. 柴达木盆地新生代以来的气候变化研究:来自碳氧同位素的证据[J]. J4, 2007, 37(5): 901-0907.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!