吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (1): 230-239.doi: 10.13278/j.cnki.jjuese.201601207

• 地质工程与环境工程 • 上一篇    下一篇

裂隙网络管道模型弥散试验

刘波, 王明玉, 张敏, 李玮   

  1. 中国科学院大学资源与环境学院, 北京 100049
  • 收稿日期:2015-04-09 出版日期:2016-01-26 发布日期:2016-01-26
  • 通讯作者: 王明玉(1961),男,教授,博士生导师,主要从事地下水环境模拟及污染控制与修复,E-mail:mwang@ucas.ac.cn E-mail:mwang@ucas.ac.cn
  • 作者简介:刘波(1989),男,研究生,主要从事地下水环境模拟研究,E-mail:bob_ucas@163.com
  • 基金资助:

    国家环保公益项目(201309003);国家科技重大专项(2011ZX05060-005);国家自然科学基金项目(40972166)

Dispersivity Experimental Investigation Based on Fracture Network Pipe Model

Liu Bo, Wang Mingyu, Zhang Min, Li Wei   

  1. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2015-04-09 Online:2016-01-26 Published:2016-01-26
  • Supported by:

    Support by Environmental Public Welfare Scientific Research Projects of China (201309003),the Key National Science & Technology Resources Project (2011ZX05060-005) and National Natural Science Foundation of China (40972166)

摘要:

为了探求不同裂隙几何参数对裂隙网络溶质运移的影响,基于离散裂隙网络思想和优势流、沟槽流理论,建立裂隙管道网络概念模型,搭建不同管径、不同连通方式的管道网络试验装置,进行渗流和溶质运移实验。运用应用广泛的模拟软件CHEMFLO-2000建立等效多孔介质模型,拟合不同几何参数下等效弥散度,定量刻画不同管道网络几何参数对溶质运移的影响,讨论了不同管径、连通方式等与等效弥散度之间的关系。通过进一步分析得出:在连通方式相同的情况下,不同管径的管道网络等效弥散度存在差异,但是差异不大;溶质在小管径中的穿透时间短于大管径,穿透曲线缓和程度相差不大;管道网络连通方式越复杂,其等效弥散度越大、对溶质运移的影响越大、穿透曲线越缓和、路径越长,等效弥散度越大;用这种等效弥散度的方法表征管道网络对溶质运移的影响,与多孔介质弥散度具有相似性;管道数目、管道面数目与等效弥散度成正相关关系,且等效弥散度随尺度的增大而增加。

关键词: 裂隙, 管道模型, 物理模型, 溶质运移, 等效弥散度

Abstract:

In order to investigate the effects made by different geometric parameters on solute transport in fracture networks, a fracture network pipe flow conceptual model was established based on the discrete fracture network model and preferential flow groove theory. A representative physical model was built in different pipe diameters with different methods of connection. A set of fluid flow and solute transport experiments were carried out. In order to quantitatively analyze the effects made by the different pipeline network geometric parameters on solute transport, a modeling software package CHEMFLO-2000 was used to set up an equivalent porous medium model and calculate the equivalent dispersivity. The results show that with the same connective method, no obvious difference of equivalent dispersivity is found among pipe networks in different pipe diameters, the solute transport time increases with the increasing of diameters, and the curves breakthrough smoothness is similar to each other. Moreover, the more complex the connection mode is, the bigger the equivalent dispersivity is. Furthermore, the longer the transport path is, the bigger the equivalent dispersivity is. In conclusion, this parameter of equivalent disperisivity can be used to characterize the influence of the fracture pipe network on solute transport like that in porous media. The equivalent dispersivity has a positive correlation with the number of pipelines and pipe surfaces, and grows with the increase of spatial scales correspondingly.

Key words: fracture, pipe network, physical model, solute transport, equivalent dispersivity

中图分类号: 

  • P641.69

[1] Mahmoudzadeh B, Liu L, Moreno L, et al. Solute Transport in a Single Fracture Involving an Arbitrary Length Decay Chain with Rock Matrix Comprising Different Geological Layers[J]. Journal of Contaminant Hydrology, 2014,164:59-71.

[2] Berkowitz B. Characterizing Flow and Transport in Fractured Geological Media:A Review[J]. Advances in Water Resources,2002,25(8):861-884.

[3] 束龙仓,范建辉,鲁程鹏,等. 裂隙-管道介质泉流域水文地质模拟试验[J].吉林大学学报(地球科学版),2015,45(3):908-917. Shu Longcang,Fan Jianhui,Lu Chengpeng,et al.Hydrogeological Simulation Test of Fissure-Conduit Media in Springs Watershed[J].Journal of Jilin University(Earth Science Edition),2015,45(3):908-917.

[4] 周志芳, 顾长存. 裂隙水研究进展[J]. 河海科技进展, 1994,14(1):50-55. Zhou Zhifang,Gu Changcun. Advances of Groundwater Flow in Fractures[J]. Advances in Science and Technology of Water Resources, 1994,14(1):50-55.

[5] 钱家忠, 杨立华, 李如忠, 等. 基岩裂隙系统中地下水运动物理模拟研究进展[J]. 合肥工业大学学报(自然科学版),2003,26(4):510-513. Qian Jiazhong, Yang Lihua, Li Ruzhong, et al.Advances in Laboratory Study of Groundwater Flow in Fractures System[J]. Journal of Hefei University of Technology(Natural Science), 2003,26(4):510-513.

[6] 程诚, 吴吉春, 葛锐, 等. 单裂隙介质中的溶质运移研究综述[J]. 水科学进展, 2003,14(4):502-508. Cheng Cheng, Wu Jichun, Ge Rui, et al. Review of the Research on Solute Transport in a Single Fracture[J]. Advances in Water Science, 2003,14(4):502-508.

[7] 王礼恒, 李国敏, 董艳辉. 裂隙介质水流与溶质运移数值模拟研究综述[J]. 水利水电科技进展, 2013,33(4):84-88. Wang Liheng,Li Guomin,Dong Yanhui. Review of Numerical Simulation of Flow and Solute Transport in Fractured Media[J]. Advances in Science and Technology of Water Resources, 2013,33(4):84-88.

[8] 王海龙. 基岩裂隙水渗流数值模拟研究综述[J]. 世界核地质科学, 2012,29(2):85-91. Wang Hailong.Review on the Numerical Simulation of Seepage of Bedrock Fissure Water[J]. World Nuclear Geoscience, 2012,29(2):85-91.

[9] 刘华梅, 王明玉. 三维裂隙网络渗流路径识别算法及其优化[J]. 中国科学院研究生院学报, 2010, 27(4):463-470. Liu Huamei,Wang Mingyu. Algorithms and Their Optimization for Identification of the Connected Flow Paths for 3D Fracture Networks in Fractured Rocks[J]. Journal of the Graduate School of the Chinese Academy of Sciences,2010,27(4):463-470.

[10] 黄勇. 多尺度裂隙介质中的水流和溶质运移随机模拟研究[D].南京:河海大学, 2005. Huang Yong. Stochastic Simulation Study of Flow and Solute Transport in Multi-Scales Fractured Media[D].Nanjing:Hohai University,2005.

[11] Long J C. Investigation of Equivalent Porous Medium Permeability in Networks of Discontinuous Fractures[M]. California:Lawrence Berkeley Lab, 1983.

[12] Long J, Remer J, Wilson C, et al. Porous Media Equivalents for Networks of Discontinuous Fractures[J]. Water Resour Res, 1982,18:645-658.

[13] Long J, Gilmour P, Witherspoon P A. A Model for Steady Fluid Flow in Random Three-Dimensional Networks of Disc-Shaped Fractures[J]. Water Resour Res, 1985,21:1105-1115.

[14] 万力, 李定方,李吉庆. 三维裂隙网络的多边形单元渗流模型[J]. 水利水运科学研究, 1993(4):347-353. Wan Li, Li Dingfang, Li Jiqing. A Fluid-Flow Model for Three-Dimensional Network of Polygonal Fractures[J]. Hydro-Science and Engineering, 1993(4):347-353.

[15] Dershowitz W S, Fidelibus C. Derivation of Equivalent Pipe Network Analogues for Three-Dimensional Discrete Fracture Networks by the Boundary Element Method[J]. Water Resour Res, 1999,35:2685-2691.

[16] Dverstorp B, Andersson J, Nordqvist W. Discrete Fracture Network Interpretation of Field Tracer Migration in Sparsely Fractured Rock[J]. Water Resour Res, 1992,28:2327-2343.

[17] Tsang Y W, Tsang C F. Channel Model of Flow Through Fractured Media[J]. Water Resour Res, 1987,23:467-479.

[18] Tsang Y W, Tsang C F, Neretnieks I,et al. Flow and Tracer Transport in Fractured Media:A Variable Aperture Channel Model and Its Properties[J]. Water Resour Res, 1988,24:2049-2060.

[19] Tsang C F, Tsang Y W, Hale F V. Tracer Transport in Fracutres-Analysis of Field Data Based on a Variable-Aperture Channel Model[J]. Water Resour Res, 1991,27:3095-3106.

[20] Wang M, Kulatilake P, Um J, et al. Estimation of REV Size and Three-Dimensional Hydraulic Conductivity[J]. International Journal of Rock Mechanics & Mining Sciences, 2002,39:887-904.

[21] 王恩志, 孙役, 黄远智, 等. 三维离散裂隙网络渗流模型与实验模拟[J]. 水利学报, 2002(5):37-40. Wang Enzhi, Sun Yi, Huang Yuanzhi,et al.3-D Seepage Flow Model for Discrete Fracture Network and Verification Experiment[J]. Journal of Hydraulic Engineering, 2002(5):37-40.

[22] Xu Z, Ma G, Li S. A Graph-Theoretic Pipe Network Method for Water Flow Simulation in a Porous Medium:GPNM[J]. International Journal of Heat and Fluid Flow, 2014,45:81-97.

[23] Li S, Xu Z, Ma G. A Graph-Theoretic Pipe Network Method for Water Flow Simulation in Discrete Fracture Networks:GPNM[J]. Tunn Undergr Space Technol, 2014,42:247-263.

[24] 腾强, 王明玉, 王慧芳. 裂隙管道网络物理模型水流与溶质运移模拟试验[J]. 中国科学院研究生院学报,2014,31(1):54-60. Teng Qiang,Wang Mingyu,Wang Huifang. Experiments on Fluid Flow and Solute Transport in the Fracture Network Pipe Model[J]. Journal of University of Chinese Academy of Sciences,2014,31(1):54-60.

[25] Huang Y, Tang Y, Zhou Z, et al. Experimental Investigation of Contaminant Migration in Filled Fracture[J]. Environ Earth Sci, 2014,71:1205-1211.

[26] Tsang C F. Modeling Groundwater Flow and Mass Transport in Heterogeneous Media:Issues and Challenges[J]. Earth Sciences:Journal of China University of Geosciences, 2000, 25(5):443-450.

[27] Cacas M C, Ledoux E, Marsily G, et al. Modeling Fracture Flow with a Stochastic Discrete Fracture Network:Calibration and Validation:1:The Flow Model[J]. Water Resour Res, 1990,26:479-489.

[28] 王洪涛. 多孔介质污染物迁移动力学[M]. 北京:高等教育出版社, 2008:47. Wang Hongtao.Dynamics of Fluid Flow and Conta-minant Transport in Porous Media[M].Beijing:China Higher Education Press,2008:47.

[1] 赵小二, 常勇, 彭伏, 吴吉春. 水箱-管道系统溶质运移实验研究及其岩溶水文地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1219-1228.
[2] 逄硕, 刘财, 郭智奇, 刘喜武, 霍志周, 刘宇巍. 基于岩石物理模型的页岩孔隙结构反演及横波速度预测[J]. 吉林大学学报(地球科学版), 2017, 47(2): 606-615.
[3] 束龙仓, 范建辉, 鲁程鹏, 张春艳, 唐然. 裂隙-管道介质泉流域水文地质模拟试验[J]. 吉林大学学报(地球科学版), 2015, 45(3): 908-917.
[4] 杜超, 肖长来, 吕军, 田浩然. 地下水水质实时预报系统开发及应用:以下辽河平原为例[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1625-1632.
[5] 赵权利,尚岳全,支墨墨. 平推式滑坡启动判据的修正[J]. 吉林大学学报(地球科学版), 2014, 44(2): 596-602.
[6] 张雪昂,王祝文,韩春江,向旻,杨闯. 利用Hudson裂隙模型分析井径变化对声波测井响应的影响[J]. 吉林大学学报(地球科学版), 2013, 43(6): 2050-2056.
[7] 许天福, 金光荣, 岳高凡, 雷宏武, 王福刚. 地下多组分反应溶质运移数值模拟:地质资源和环境研究的新方法[J]. J4, 2012, 42(5): 1410-1425.
[8] 曾玉超, 苏正, 吴能友, 王晓星, 胡剑. 漳州地热田基岩裂隙水系统温度分布特征[J]. J4, 2012, 42(3): 814-820.
[9] 李明, 李广杰, 张文, 刘慧明, 王吉亮, 杨静. 基于卡方检验法对长白山龙门峰裂隙岩体统计均质区划分[J]. J4, 2012, 42(2): 449-453.
[10] 刘斌, 李术才, 李树忱, 聂利超, 钟世航, 宋杰, 刘征宇. 隧道含水构造电阻率法超前探测正演模拟与应用[J]. J4, 2012, 42(1): 246-253.
[11] 马瑞杰, 赵宇琦, 张静, 黄平. 基岩三维流数学模型求解的广义差分法及应用[J]. J4, 2009, 39(5): 863-867.
[12] 周彦章,迟宝明,刘中培. 山东夏甸金矿床充水机理构造控制模式[J]. J4, 2008, 38(2): 255-0260.
[13] 王金生,滕彦国,吴东杰. 不流动水与非平衡吸附作用对溶质运移影响的数值模型-MIENESOR[J]. J4, 2007, 37(2): 266-270.
[14] 马瑞杰,李欣. 岩溶裂隙地下水流数学模型求解的有限体积法及应用[J]. J4, 2005, 35(06): 762-0765.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!