吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (2): 379-387.doi: 10.13278/j.cnki.jjuese.201602107

• 地质与资源 • 上一篇    下一篇

X-CT扫描成像技术在致密砂岩微观孔隙结构表征中的应用——以大安油田扶余油层为例

李易霖1,2, 张云峰1,2, 丛琳1,2, 谢舟3, 闫明1,2, 田肖雄1,2   

  1. 1. 东北石油大学地球科学学院, 黑龙江大庆 163318;
    2. "非常规油气成藏与开发"省部共建国家重点实验室培育基地, 黑龙江大庆 163318;
    3. 中国石油天然气集团公司塔里木油田分公司勘探开发研究院, 新疆库尔勒 841000
  • 收稿日期:2015-09-10 发布日期:2016-03-26
  • 作者简介:李易霖(1988-),男,博士研究生,主要从事储层地质学与油藏描述方面的研究,E-mail:liyilindaqing@163.com
  • 基金资助:

    国家高技术研究发展计划项目("863"计划)(2013AA064903);国家自然科学基金项目(41572132)

Application of X-CT Scanning Technique in the Characterization of Micro Pore Structure of Tight Sandstone Reservoir: an Example from Fuyu Oil Layer in Daan Oilfield

Li Yilin1,2, Zhang Yunfeng1,2, Cong Lin1,2, Xie Zhou3, Yan Ming1,2, Tian Xiaoxiong1,2   

  1. 1. College of Earth Sciences, Northeast Petroleum University, Daqing 163318, Heilongjiang, China;
    2. "Unconventional Oil and Gas Reservoir Forming and Exploitation" Key Laboratory Cultivation Base Co-Sponsored by Province and Ministry, Daqing 163318, Heilongjiang, China;
    3. China National Petroleum Porporation, Tarim Oilfield Branch Exploration and Development Research Institute, Korla 841000, Xinjiang, China
  • Received:2015-09-10 Published:2016-03-26
  • Supported by:

    Supported by the National High Technology Research and Development Program of China ("863" Program)(2013AA064903) and the Natural Science Foundation of China(41572132)

摘要:

以松辽盆地南部大安油田扶余油层致密砂岩样品为研究对象,利用VGStudio MAX强大的CT数据分析功能结合Avizo软件先进的数学算法,建立了大安油田扶余油层致密砂岩多尺度三维数字岩心模型,该模型具有样品无损、结果直观、数据丰富等优势;同时结合环境描电镜(ESEM)、Maps图像拼接技术、铸体薄片、恒速压汞等油气分析测试方法对松辽盆地南部大安油田扶余油层微观孔隙特征进行了定量表征,为进一步开展大安油田扶余油层渗流机理的研究打下了基础。研究表明:微米尺度下,大安油田扶余油层储集空间类型以溶蚀型孔隙和微裂缝为主,不同孔渗的样品孔喉的形态和尺寸有所不同,孔喉形态多为球状和条带状,孔喉分布状态主要有连片状和孤立状两种;纳米尺度下,大安油田扶余油层储集空间类型以矿物颗粒内部或表面的溶蚀孔隙和微裂缝为主,纳米孔喉形态上多呈小球状、管状,微裂缝对纳米级孔隙有很好的沟通作用。喉道半径较窄是造成样品的实测渗透率较低的主要原因。

关键词: 大安油田, 扶余油层, X-CT扫描技术, 致密砂岩, 微观孔隙结构, 数字岩心

Abstract:

The tight sandstone samples from Fuyu oil layer in Daan oilfield of Songliao basin were studied. In order to further study on the mechanism of seepage, a 3D digital core model with real pore throat structure was constructed by combining VGStudio MAX with Avizo, which has the advantages of non-destructive to samples, visualized results, and abundant data. Combining with ESEM Maps image splicing technology, the casting thin sections, and a constant speed mercury penetration analysis, the micro pore structure quantitative characterization of Daan oilfield was studied in Fuyu oil layer in the southern Songliao basin. The research showed that at micro-scale, the reservoir space types are mainly dissolution pores and micro cracks, the samples of different porosity and permeability have different pore throat size.The pore structure morphology is characterized by the two main forms of globular and stripped, and their pore throat distribution are two forms of contiguous and isolated; at nanoscale, reservoir space types are dissolution pores with mineral particles inside or on the surface and micro cracks, the pore throat morphology is characterised by the two forms of small globular and tubular, and the micro cracks have very good connection with nanoscale pore. Narrow throat radius is the main cause of low permeability of the samples.

Key words: Daan oilfield, Fuyu oil layer, X-CT scanning technique, tight sandstone, microscopic pore structure, digital core

中图分类号: 

  • TE122.2

[1] 吴胜和,熊琦华. 油气储层地质学[M]. 北京:石油工业出版社,1998:113-122. Wu Shenghe, Xiong Qihua. Hydrocarbon Reservoir Geology[M]. Beijing:Petroleum Industry Press, 1998:113-122.

[2] 杨正明,姜汉桥,李树铁,等. 低渗气藏微观孔隙结构特征参数研究:以苏里格和迪那低渗透油藏为例[J]. 石油天然气学报,2007,29(6):108-110. Yang Zhengming, Jiang Hanqiao, Li Shutie, et al. Low Permeability Gas Reservoir Microscopic Pore Structure Characteristic Prameters Rsearch:Taking an Eample from Sulige and Dina Low Prmeability Rservoirs[J]. Journal of Oil and Gas Technology, 2007, 29(6):108-110.

[3] Prodanovi? M, Lindquist W B, Seright R S. Porous Sructure and Fuid Prtitioning in Plyethylene Cores from 3D X-Ray Microtomographic Imaging[J]. Journal of Colloid and Interface Science, 2006, 298(1):282-297.

[4] Dewanckele J, De Kock T, Boone M A, et al. 4D Imaging and Quantification of Pore Structure Modifications Inside Natural Building Stones by Means of High Resolution X-Ray CT[J]. Science of the Total Environment, 2012, 416:436-448.

[5] Bijeljic B, Muggeridge A H, Blunt M J. Pore-Scale Modeling of Longitudinal Dispersion[J]. Water Resources Research, 2004, 40(11):417-427.

[6] 白斌,朱如凯,吴松涛,等. 利用多尺度CT成像表征致密砂岩微观孔喉结构[J]. 石油勘探与开发,2013,40(3):329-333. Bai Bin, Zhu Rukai, Wu Songtao, et al. Multi-Scale Method of Nano(Micro)-CT Study on Modifications Inside Natural Building Stones by Means of High Resolution X-Ray CT[J]. Petroleum Exploration and Development, 2013,40(3):329-333.

[7] Sakdinawat A, Attwood D. Nanoscale X-Ray Imaging[J]. Nature Photonics, 2010, 267(4):840-848.

[8] Attwood D. Microscopy:Nanotomography Comes of Age[J]. Nature, 2006, 442(10):642-643.

[9] 屈乐,孙卫,杜环虹,等. 基于CT扫描的三维数字岩心孔隙结构表征方法及应用:以莫北油田116井区三工河组为例[J]. 现代地质,2014,28(1):190-196. Qu Le, Sun Wei, Du Huanhong, et al. Characterization Technique of Pore Structure by 3D Digital Core Based on CT Scanning and Its Application:An Example from Sangonghe Formation of 116 Well Field in Mobei Oilfield[J]. Modern Geology, 2014,28(1):190-196.

[10] 刘向君,朱洪林,梁利喜. 基于微CT技术的砂岩数字岩石物理实验[J]. 地球物理学报,2014,57(4):1133-1140. Liu Xiangjun, Zhu Honglin, Liang Lixi. Digital Rock Physics of Sandstone Based on Micro-CT Technology[J]. Chinese Journal of Geophysics, 2014,57(4):1133-1140.

[11] 苏娜,段永刚,于春生. 微CT扫描重建低渗气藏微观孔隙结构:以新场气田上沙溪组储层为例[J]. 石油与天然气地质,2011,32(5):792-796. Su Na, Duan Yonggang, Yu Chunsheng. Reconstruction of Microscopic Pore Structure in Low Permeabilit Gas Reservoirs by Micro-CT Scanning[J]. Oil & Gas Geology, 2011,32(5):792-796.

[12] 孙卫,史成恩,赵惊蛰,等. X-CT扫描成像技术在特低渗透储层微观孔隙结构及渗流机理研究中的应用:以西峰油田庄19井区长82储层为例[J]. 地质学报,2006,80(5):775-779. Sun Wei, Shi Cheng'en, Zhao Jingzhe, et al. Application of X-CT Scanned Image Technique in the Research of Micro-Pore Texture and Percolation Mechanism in Ultra-Permeable Oil Field:Taking an Example from Chang 82 Formation in the Xifeng Oil Field[J]. Acta Geologica Sinica, 2006,80(5):775-779.

[13] 郝乐伟,王琪,唐俊. 储层岩石微观孔隙结构研究方法与理论综述[J]. 岩性油气藏,2013,25(5):123-128. Hao Lewei, Wang Qi, Tang Jun. Research Progress of Reservoir Microscopic Pore Structure[J]. Lithologic Reservoirs, 2013,25(5):123-128.

[14] 邹才能,朱如凯,吴松涛,等. 常规与非常规油气聚集类型、特征、机理及展望:以中国致密油和致密气为例[J]. 石油学报,2012,33(2):173-187. Zou Caineng, Zhu Rukai, Wu Songtao, et al. Types, Characteristics, Genesis and Prospects of Conventional and Unconventional Hydrocarbon Accumulations:Taking Tight Oil and Tight Gas in China as an Instance[J]. Acta Petrolei Sinica, 2012,33(2):173-187.

[15] 姚泾利,赵彦德,邓秀芹,等. 鄂尔多斯盆地延长组致密油成藏控制因素[J]. 吉林大学学报(地球科学版),2015,45(4):983-992. Yao Jingli, Zhao Yande, Deng Xiuqin, et al. Controlling Factors of Tight Oil Reservior in Triassic Yanchang Formation in Ordos Basin[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4):983-992.

[1] 王玉霞, 周立发, 焦尊生, 尚庆华, 黄生旺. 鄂尔多斯盆地陕北地区延长组致密砂岩储层敏感性评价[J]. 吉林大学学报(地球科学版), 2018, 48(4): 981-990.
[2] 林承焰, 王杨, 杨山, 任丽华, 由春梅, 吴松涛, 吴玉其, 张依旻. 基于CT的数字岩心三维建模[J]. 吉林大学学报(地球科学版), 2018, 48(1): 307-317.
[3] 蔡来星, 卢双舫, 张训华, 肖国林, 吴志强, 黄文彪. 基于孔喉结构建立致密砂岩储层评价方案——以松南中央坳陷泉四段为例[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1654-1667.
[4] 崔利凯, 孙建孟, 闫伟超, 高银山, 王洪君, 宋丽媛. 基于多分辨率图像融合的多尺度多组分数字岩心构建[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1904-1912.
[5] 张焕旭, 陈世加, 路俊刚, 刘超威, 陈娟, 李勇, 徐坤. “膨胀力”作用下致密砂岩储层石油运聚特征[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1341-1351.
[6] 陈冬霞, 庞雄奇, 杨克明, 祝渭平, 严青霞. 川西坳陷深层叠复连续型致密砂岩气藏成因及形成过程[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1611-1623.
[7] 刘鹏, 王伟锋, 孟蕾, 姜帅. 鄂尔多斯盆地上古生界煤层气与致密气联合优选区评价[J]. 吉林大学学报(地球科学版), 2016, 46(3): 692-701.
[8] 潘保芝, 蒋必辞, 刘文斌, 房春慧, 张瑞. 致密砂岩储层含气测井特征及定量评价[J]. 吉林大学学报(地球科学版), 2016, 46(3): 930-937.
[9] 刘四兵, 沈忠民, 吕正祥, 宋荣彩, 王鹏. 川西新场气田上三叠统须二、须四段相对优质储层成因差异性分析[J]. 吉林大学学报(地球科学版), 2015, 45(4): 993-1001.
[10] 潘保芝, 石玉江, 蒋必辞, 刘丹, 张海涛, 郭宇航, 杨小明. 致密砂岩气层压裂产能及等级预测方法[J]. 吉林大学学报(地球科学版), 2015, 45(2): 649-654.
[11] 王淑萍,徐守余,董春梅,王丽萍,刘春平. 东营凹陷民丰洼陷北带沙四下亚段深层天然气储层成岩作用[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1747-1759.
[12] 李军, 邹华耀, 张国常, 李平平, 冯冲, 张彦振, 陈加松. 川东北地区须家河组致密砂岩气藏异常高压成因[J]. J4, 2012, 42(3): 624-633.
[13] 白云风, 冯志强, 程日辉, 任延广, 唐华风. 大庆长垣扶余油层沉积层序构成及充填响应[J]. J4, 2012, 42(2): 312-320.
[14] 魏虎, 孙卫, 晏宁平, 刘舵. 靖边气田富水区扩大原因及控水措施[J]. J4, 2010, 40(5): 1014-1019.
[15] 刘宗堡, 吕延防, 付晓飞, 付广, 李迪, 李晓伟. 三肇凹陷扶余油层沉积特征及油气成藏模式[J]. J4, 2009, 39(6): 998-1006.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!