吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (2): 443-460.doi: 10.13278/j.cnki.jjuese.201602112
严威1, 邱殿明2, 丁清峰1, 刘飞1
Yan Wei1, Qiu Dianming2, Ding Qingfeng1, Liu fei1
摘要:
对东昆仑造山带五龙沟地区的猴头沟二长花岗岩开展了详细的岩相学、地球化学、锆石U-Pb年龄及Hf同位素的分析测试和研究工作。LA-ICP-MS锆石U-Pb测年表明,猴头沟二长花岗岩的206Pb/238U加权平均年龄值为(419.0±1.9)Ma,属于晚志留世。岩石地球化学数据表明:猴头沟二长花岗岩属于高钾钙碱性系列的A2型花岗岩,富SiO2、K2O、Y(>33×10-6)和Yb,贫Al2O3和Sr(<100×10-6),具有强烈的负铕异常;Rb、Th、U、La、Ce、Nd相对富集,Nb、Ta、Ba、Sr、P、Ti亏损。锆石的Hf同位素研究表明,其εHf(t)值为0.2~5.1,对应二阶段模式年龄(TDM2)为1066~1371 Ma,由此推测花岗岩源区来自中元古代镁铁质下地壳部分熔融。微量元素及其特征比值的构造判别图解表明,猴头沟二长花岗岩形成于早古生代晚志留世东昆仑造山旋回的造山后伸展阶段。据此认为,原特提斯洋在东昆仑地区的最晚闭合时限应该不晚于晚志留世末期(~419 Ma),而不是前人认为的早泥盆世。
中图分类号:
[1] 刘彬, 马昌前, 张金阳, 等.东昆仑造山带东段早泥盆世侵入岩的成因及其对早古生代造山作用的指示[J]. 岩石学报, 2012, 28(6):1785-1807. Liu Bin, Ma Changqian, Zhang Jinyang, et al. Petrogenesis of Early Devonian Intrusive Rocks in the East Part of Eastern Kunlun Orogen and Implication for Early Palaeozoic Orogenic Processes[J]. Acta Petrologica Sinica, 2012,28(6):1785-1807.[2] 谌宏伟, 罗照华, 莫宣学, 等. 东昆仑喀雅克登塔格杂岩体的SHRI MP年龄及其地质意义[J]. 岩石矿物学杂志, 2006, 25(1):25-32. Chen Hongwei, Luo Zhaohua, Mo Xuanxue, et al. SHRIMP Ages of Kayakedengtage Complex in the East Kunlun Mountains and Their Geological Implications[J]. Acta Petrologica Etmineralogica, 2006, 25(1):25-32.[3] 赵振明, 马华东, 王秉璋, 等. 东昆仑早泥盆世碰撞造山的侵入岩证据[J]. 地质论评, 2008,54(1):47-56. Zhao Zhenming, Ma Huadong, Wang Bingzhang, et al. The Evidence of Intrusive Rocks About Collision-Orogeny During Early Devonian in Eastern Kunlun Area[J]. Geological Review, 2008, 54(1):47-56.[4] 郭通珍, 刘荣, 陈发彬, 等. 青海祁漫塔格山乌兰乌珠尔斑状正长花岗岩LA-MC-ICPMS锆石U-Pb定年及地质意义[J]. 地质通报, 2011, 30(8):1203-1211. Guo Tongzhen, Liu Rong, Chen Fabin, et al. LA-MC-ICPMS Zircon U-Pb Dating of Wulanwuzhuer Porphyritic Syenitegranite in the Qimantag Mountain of Qinghai and Its Geological Significance[J]. Geological Bulletin of China, 2011, 30(8):1203-1211.[5] 高永宝, 李文渊, 钱兵, 等. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报,2014, 30(6):1647-1665. Gao Yongbao, Li Wenyuan, Qian Bing, et al. Geochronology, Geochemistry and Hf Isotopic Compositions of the Granitic Rocks Related with Iron Mineralization in Yemaquan Deposit, East Kunlun, NW China[J]. Acta Petrologica Sinica, 2014, 30(6):1647-1665.[6] 刘彬, 马昌前, 郭盼, 等. 东昆仑中泥盆世A型花岗岩的确定及其构造意义[J]. 地球科学:中国地质大学学报, 2013, 38(5):947-962. Liu Bin, Ma Changqian, Guo Pan, et al. Discovery of the Middle Devonian A-Type Granite from the Eastern Kunlun Orogen and Its Tectonic Implications[J]. Earth Science:Journal of China University of Geosciences, 2013,38(5):947-962.[7] 王冠,孙丰月,李碧乐,等.东昆仑夏日哈木矿区闪长岩锆石U-Pb年代学、地球化学及其地质意义[J].吉林大学学报(地球科学版), 2014,44(3):876-891. Wang Guan, Sun Fengyue, Li Bile, et al. Zircon U-Pb Geochronology and Geochemistry of Diorite in Xiarihamu Ore District from East Kunlun and Its Geological Significance[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(3):876-891.[8] 高永宝, 李文渊. 东昆仑造山带祁漫塔格地区白干湖含钨锡矿花岗岩:岩石学、年代学、地球化学及岩石成因[J]. 地球化学, 2011, 40(4):324-336. Gao Yongbao, Li Wenyuan. Petrogenesis of Granites Containing Tungsten and Tin Ores in the Baiganhu Deposit, Qimantage, NW China:Constraints from Petrology, Chronology and Geochemistry[J]. Geochimica,2011, 40(4):324-336.[9] 陈广俊,孙丰月,李碧乐,等.东昆仑沟里地区暗色包体及其寄主岩石地球化学特征及成因[J].吉林大学学报(地球科学版),2014,44(3);892-904. Chen Guangjun, Sun Fengyue, Li Bile, et al. Geochemistry and Petrogenesis of Gouli Mafic Enclaves and Their Host Rocks in Eastern Kunlun. Journal of Jilin University(Earth Science Edition), 2014,44(3):892-904.[10] 李金超,贾群子,杜玮,等.东昆仑东段阿斯哈矿床石英闪长岩LA-ICP-MS锆石U-Pb定年及岩石地球化学特征[J].吉林大学学报(地球科学版),2014,44(4):1188-1199. Li Jinchao,Jia Qunzi,Du Wei,et al. LA-ICP-MS Zircon Dating and Geochemical Characteristics of Quartz Diorite in Asiha Gold Deposit in East Segment of the Eastern Kunlun[J]. Journal of Jilin University(Earth Science Edition),2014,44(4):1188-1199.[11] Peng Bo, Sun Fengyue,Li Bile,et al.The Geochemistry and Geochronology of the Xiarihamu II Mafic-Ultramafic Complex, Eastern Kunlun, Qinghai Province,China:Implications for the Genesis of Magmatic Ni-Cu Sulfide Deposits Ore[J]. Geology Reviews, 2016, 73:13-28.[12] 莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 13(3):403-414. Mo Xuanxue,Luo Zhaohua,Deng Jinfu,et al.Granitoids and Crustal Growth in the East Kunlun Orogenic Belt[J]. Geological Journal of China Universities, 2007,13(3):403-414.[13] 许志琴,杨经绥,李海兵,等.造山的高原:青藏高原的地体拼合、碰撞造山及隆升机制[M].北京:地质出版社, 2007:1-458. Xu Zhiqin, Yang Jingsui, Li Haibing, et al. Terrane Amalgamation, Collision and Uplift in the Qinghai-Tibet Plateau[M]. Beijing:Geological Publishing House, 2014:1-458.[14] Chen N S, Sun M, Wang, Q Y, et al. EMP Chemical Ages of Monazites from Central Zone of the Eastern Kunlun Orogen, Records of Multi-Tectonometamorphic Events[J]. Chinese Science Bulletin, 2007, 52(16):2252-2263.[15] Yuan C, Zhou M F, Sun M, et al. Triassic Granit-oids in the Eastern Songpan Ganzi Fold Belt, SW China, Magmatic Response Togeodynamics of the Deep Lithosphere[J]. Earth and Planetary Science Letters, 2010, 290(3/4):481-491.[16] 姜春发, 杨经绥, 冯秉贵, 等. 昆仑开合构造[M]. 北京:地质出版社, 1992:1-224. Jiang Chunfa, Yang Jingsui, Feng Binggui, et al. The Opening and Closing Structure of Kunlun Area[M]. Beijing:Geological Publishing House,1992:1-224.[17] Yang J S, Robinson P T, Jiang C F, et al. Ophiolites of the Kunlun Mountains, China and Their Tectonic Implications[J]. Tectonophysics, 1996, 258(1/2/3/4):215-231.[18] Yang J S, Shi R D, Wu C L, et al. Dur'ngoi Ophiolite in East Kunlun, Northeast Tibetan Plateau:Evidence for Paleo-Tethyan Suture in Northwest China[J]. Journal of Earth Science, 2009, 20(2):303-331.[19] Sengör A M C. Tectonics of the Tethysides, Orogenic Collage Development in a Collisional Setting[J]. Annual Review of Earth and Planetary Sciences, 1987, 15:213-244.[20] Yin A, Harrison T M. Geologic Evolution of the Himalayan-Tibetan Orogen[J].Annual Review of Earth and Planetary Sciences, 2000, 28:211-280.[21] Roger F, Arnaud N, Gilder S, et al. Geochronological and Geochemical Constraints on Mesozoic Suturingin East Central Tibet[J]. Tectonics, 2003, 22(4):1037-1057.[22] 青海省第一地质矿产勘查院.青海省都兰县五龙沟地区红旗沟深水潭金矿区详查报告[R].平安:青海省第一地质矿产勘查院,2010. First Geology and Mineral Exploration Institute of Qinghai Province. The Detailed Investigation Report of Gold Deposit in Hongqigou-Shenshuitan, Wulonggou, Qinghai Province[R]. Ping'an:The First Geology and Mineral Exploration Institute of Qinghai Province, 2010.[23] 李厚民,沈远超,胡正国,等. 青海东昆仑五龙沟金矿床成矿条件及成矿机理[J]. 地质与勘探, 2001, 37(1):65-69. Li Houmin, Shen Yuanchao, Hu Zhengguo, et al. Minerogenetic Mechanism and Condition of Wulonggou Gold Deposit In East Kunlun Mountains, Qinghai Province[J]. Geology and Prospecting,2001, 37(1):65-69.[24] 丰成友. 青海东昆仑地区的复合造山过程及造山型金矿床成矿作用[D].北京:中国地质科学院,2002. Feng Chengyou. Multiple Orogenic Processes and Mineralization of Orogenic Gold Deposits in the Eastern Kunlun Orogen, Qinghai Province[D]. Beijing:Chinese Academy of Geological Sciences, 2002.[25] 张德全, 张慧, 丰成友, 等. 柴北缘东昆仑地区造山型金矿床的流体包裹体研究[J]. 中国地质,2007, 34(5):843-854. Zhang Dequan, Zhang Hui, Feng Chengyou, et al. Fluid Inclusions in Orogenic Gold Deposits in the Northern Qaidammargin-East Kunlun Region[J]. Geology in China, 2007, 34(5):843-854.[26] 陆露, 张延林, 吴珍汉, 等.东昆仑早古生代花岗岩锆石U-Pb年龄及其地质意义[J]. 地球学报, 2013, 34(4):447-454. Lu Lu, Zhang Yanlin, Wu Zhenhan, et al. Zircon U-Pb Dating of Early Paleozoic Granites from the East Kunlun Mountains and Its Geological Significance[J]. Acta Geoscientica Sinica, 2013, 34(4):447-454.[27] Hu Z C, Gao S, Liu Y S, et al. Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(8):1093-1101.[28] Hu Z, Liu, Y, Gao S, et al. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2012(78):50-57.[29] Liu Y S, Hu Z C, Gao S, et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard[J]. Chemical Geology, 2008, 257(1/2):34-43.[30] Liu Y S, Gao S, Hu Z C, et al. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths[J]. Journal of Petrology, 2010, 51(1/2):537-571.[31] Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15):1535-1546.[32] Ludwig K R. User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel[M].Berkeley:Geochronology Center, 2003:1-70.[33] Ding Q F, Jiang S Y, Sun F Y. Zircon U-Pb Geochronology, Geochemical and Sr-Nd-Hf Isotopic Compositions of the Triassic Granite and Diorite Dikes from the Wulonggou Mining Area in the Eastern Kunlun Orogen, NW China:Petrogenesis and Tectonic Implications[J]. Lithos, 2014, 205:266-283.[34] Wu F Y, Yang Y H, Xie L W, et al, Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in U-Pb Geochronology[J]. Chemical Geology, 2006, 234(1/2):105-126.[35] Hou K J, Li Y H, Zou T R, et al. Laser Ablation MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications[J]. Acta Petrologica Sinica, 2007, 23:2595-2604.[36] Rickwood P C. Boundary Lines Within Petrologic Diagrams Which Use Oxides of Major and Minor Elements[J]. Lithos, 1989, 22(4):247-263.[37] Maniar P D, Piccoli P M. Tectonic Discrimination of Granitoids[J]. Geological Society of America Bulletin, 1989, 10(3/4):635-643.[38] Watson E B, Harrison T M. Zircon Saturation Revisited, Temperature and Composition Effects in a Variety of Crustal Magma Types[J]. Earth and Planetary Science Letters, 1983, 64(2):295-304.[39] Boynton W V.Geochemistry of the Rate Earth Elements:Meteorite Studies[M]//Henderson P. Rare Earth Elements Geochemistry.Amsterdam:Elsevier, 1984:63-114.[40] McDonough W F, Sun S S. The Composition of the Earth[J]. Chemical Geology, 1995, 120(3/4):223-253.[41] Jiang Y H, Liu Z, Jia R Y, et al. Miocene Potassic Granite-Syenite Association in Western Tibetan Plateau:Implications for Shoshonitic and High Ba-Sr Granite Genesis[J]. Lithos, 2012, 134:146-162.[42] Soderlund U, Patchett P J, Vervoort J D, et al. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions[J].Earth and Planetary Science Letters, 2004, 219(3/4):311-324.[43] Bouvier A, Vervoort J D, Patchett P J. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR:Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets[J]. Earth and Planetary Science Letters, 2008, 273(1/2):48-57.[44] Griffin W L, Pearson N J, Belousova E, et al. The HfIsotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1):133-147.[45] Griffn W L, Wan, X, Jackson S E, et al. Zircon Chemistry and Magma Mixing, SE China, In-Situ Analysis of Hf Isotopes, Tongluand Pingtan Igneous Complexes[J]. Lithos, 2002,61(3/4):237-269.[46] 侯可军, 李延河, 邹天人, 等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报,2007,23(10):2595-2604. Hou Kejun, Li Yanhe, Zou Tianren, et al. Laser Ablation MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications[J]. Acta Petrologica Sinica, 2007, 23(10):2595-2604.[47] Whalen J B, Currie K L, Chappell B W. A-Type Granites, Geochemical Characteristics, Discrimination and Petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4):407-419.[48] Eby G N. Chemical Subdivision of the A-Type Granitoids, Petrogenetic and Tectonic Implications[J]. Geology, 1992, 20(7):641-644.[49] Turner S P, Foden J D, Morrison R S. Derivation of Some A-Type Magmas by Fractionation of Basaltic Magma, an Example from the Padthaway Ridge, South Australia[J]. Lithos, 1992, 28(2):151-179.[50] Mushkin A, Navon O, Halicz L, et al. The Petrogenesis of A-Type Magmas from the Amram Massif, Southern Israel[J]. Journal of Petrology, 2003, 44(5):815-832.[51] Collins W J, Beams S D, White A J R. Nature and Origin of A-Type Granites With Particular Reference to Southeastern Australia[J]. Contributions to Mineralogy and Petrology, 1982, 80(2):189-200.[52] Clemens J D, Holloway J R, White A J R. Origin of an A-Type Granite:Experimental Constraints[J]. Am Mineral, 1986, 71:317-324.[53] Harris C, Marsh J S, Milner S C. Petrology of the Alkaline Core of the Messum Igneous Complex, Namibia:Evidence for the Progressively Decreasing Effect of Crustal Contamination[J]. Journal of Petrology, 1999, 40(9):1377-1397.[54] Yang J H, Wu F Y, Chung S L, et al. A hybrid Origin for the Qianshan A-Type Granite, Northeast China:Geochemical and Sr-Nd-Hf Isotopic Evidence[J]. Lithos, 2006, 89(1/2):89-106.[55] Skjerlie K P,Johnston A D. Vapor-Absent Melting at Iokbar of a Biotite and Amphibole-Bearing Tonalitic Gnesis:Implications for the Generation of A-Type Granites[J]. Geology, 1993, 20(3):263-266.[56] Baker M B, Hischmann M M, Ghiorso M S, et al. Compositions of Nearsolidus Peridotite Melt from Experiments and Thermodynamic Calculations[J]. Nature, 1995, 375:308-311.[57] Liu S, Hu R Z, Gao S, et al. Zircon U-Pb Age and Sr-Nd-Hf Isotope Geochemistry of Permian Granodiorite and Associated Gabbro in the Songliao Block, NE China and Implications for Growth of Juvenile Crust[J]. Lithos, 2010,114(3/4):423-436.[58] Wong J, Sun M, Xing G F, et al. Geochemical and Zircon U-Pb and Hf Isotopic Study of the Baijuhuajian Metaluminous A-Type Granite, Extension at 125-100 Ma and Its Tectonic Significance for South China[J]. Lithos,2009,112(3/4):289-305.[59] Chappell B W. Aluminium Saturation in I-and S-Type Granites and the Characterization of Fractionated Baplogranites[J]. Lithos, 1999,46(3):535-551.[60] King P L, White A J R, Chappell B W,et al. Characterization and Origin of Aluminous A-Type Graintes from the Lachlan Fold Belt, Southeastern Australia[J]. J Petrol, 1997,38(3):371-391.[61] King P L, Chappell B W, Allen C M, et al. Are A-Type Granites the High-Temperature Felsic Granites? Evidence from Fractionated Granites of the Wangrah Suite,Australian[J]. Earth Sci, 2001,48(4):501-514.[62] Sylvester P J. Post-Collisional Alkaline Granites[J]. The Journal of Geology, 1989,97(3):261-280.[63] Bonin B. From Orogenic to Anorogenic Settings:Evolution of Granitoid Suites After a Major Orogenesis[J]. Geological Journal, 1990,25(3/4):261-270.[64] Nedelec A, Stephens W E,Fallick A E. The Panafrican Stratoid Granites of Madagascar:Alkaline Magmatism in a Post-Collisional Extensional Setting[J]. Journal of Petrology, 1995,36(5):1367-1391.[65] Whalen J B, Jenner G A, Longstaffe F J, et al. Geochemical and Isotopic (O, Nd, Pb and Sr) Constraints on A-Type Granite:Petrogenesis Based on the Topsails Igneous Suite, Newfoundland Appalachians[J]. Journal of Petrology, 1996,37(6):1463-1489.[66] Pearce J A, Harris N B W,Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Graniticrocks[J]. Journal of Petrology, 1984, 25(4):956-983.[67] Batchelor R A,Bowden P. Petrogenetic Interpretation of Granitoid Rock Series Using Multicatoinic Parameters[J]. Chem Geol,1985,48(1):43-55. |
[1] | 张强, 丁清峰, 宋凯, 程龙. 东昆仑洪水河铁矿区狼牙山组千枚岩碎屑锆石U-Pb年龄、Hf同位素及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1085-1104. |
[2] | 朱晓颖, 杨海, 匡星涛, 彭巍巍, 张洪瑞. 新疆东昆仑-阿尔金地区航磁反映的断裂构造特征[J]. 吉林大学学报(地球科学版), 2018, 48(2): 461-473. |
[3] | 乔健, 栾金鹏, 许文良, 王志伟, 赵硕, 郭鹏. 佳木斯地块北部早古生代沉积建造的时代与物源:来自岩浆和碎屑锆石U-Pb年龄及Hf同位素的制约[J]. 吉林大学学报(地球科学版), 2018, 48(1): 118-131. |
[4] | 孙凡婷, 刘晨, 邱殿明, 鲁倩, 贺云鹏, 张铭杰. 大兴安岭东坡小奎勒河中基性侵入岩成因及地球动力学意义:锆石U-Pb年代学、元素和Hf同位素地球化学证据[J]. 吉林大学学报(地球科学版), 2018, 48(1): 145-164. |
[5] | 张超, 崔芳华, 张照录, 耿瑞, 宋明春. 鲁西金岭地区含矿闪长岩体成因:来自锆石U-Pb年代学和地球化学证据[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1732-1745. |
[6] | 杨凤超, 宋运红, 赵玉岩. 辽宁盘岭矿集区花岗岩锆石SHRIMP U-Pb年龄、Hf同位素组成及地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1429-1441. |
[7] | 付俊彧, 汪岩, 钟辉, 宋维民, 孙巍, 那福超, 钱程, 杨雅军, 庞雪娇, 江山. 内蒙古突泉县牤牛海地区超镁铁质岩地球化学及源区特征[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1172-1186. |
[8] | 刘晨, 孙景贵, 邱殿明, 古阿雷, 韩吉龙, 孙凡婷, 杨梅, 冯洋洋. 大兴安岭北段东坡小莫尔可地区中生代火山岩成因及其地质意义:元素、Hf同位素地球化学与锆石U-Pb同位素定年[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1138-1158. |
[9] | 崔建军, 王艳红, 郑光高, 施炜, 马立成. 大悟杂岩的形成和抬升时代及其地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(1): 139-153. |
[10] | 孙珍军, 孙国胜, 于赫楠, 向柱, 田毅, 刘彤, 陈旭, 李杨. 赤峰撰山子花岗岩年代学、地球化学特征及其成岩动力学背景[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1740-1753. |
[11] | 刘玉, 孙加鹏, 王献忠, 张文强, 杨华本, 梁中恺, 徐立明. 大兴安岭北部新林地区大乌苏混杂岩锆石U-Pb年代学、地球化学及其地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1383-1405. |
[12] | 孔华, 许明珠, 张强, 唐宇蔷, 赵佳进. 湘南道县辉长岩包体的锆石LA-ICP-MS定年、Hf同位组成及其地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(3): 627-638. |
[13] | 张晓飞, 李智明, 贾群子, 宋忠宝, 陈向阳, 张雨莲, 李东生, 舒晓峰. 青海祁漫塔格虎头崖多金属矿区花岗斑岩地球化学、年代学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(3): 749-765. |
[14] | 尹志刚, 王文材, 张跃龙, 王阳, 韩宇, 曹忠强, 郑贝. 伊勒呼里山中生代火山岩:锆石U-Pb年代学及其对岩浆事件的制约[J]. 吉林大学学报(地球科学版), 2016, 46(3): 766-780. |
[15] | 段志明, 李光明, 王保弟, 李应栩, 黄勇, 郭琳, 段瑶瑶. 西藏中冈底斯成矿带查个勒铅锌矿床含矿斑岩年代学及其地质意义[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1667-1690. |
|