吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (3): 587-625.doi: 10.13278/j.cnki.jjuese.20170179

• 地质与资源 •    下一篇

吉东南新太古代晚期片麻岩类的时代、成因及其对早期地壳形成演化的制约

王朝阳1, 孟恩1, 李壮2, 李艳广3, 靳梦琪3   

  1. 1. 中国地质科学院地质研究所, 北京 100037;
    2. 中国石油大学(北京)地球科学学院, 北京 102249;
    3. 中国地质调查局西安地质调查中心, 西安 710054
  • 收稿日期:2017-12-20 出版日期:2018-05-26 发布日期:2018-05-26
  • 通讯作者: 孟恩(1982-),男,副研究员,博士,主要从事前寒武地质学方面的研究,E-mail:mengen0416@126.com E-mail:mengen0416@126.com
  • 作者简介:王朝阳(1992-),男,研究生,主要从事岩石学、矿物学、矿床学方面的研究,E-mail:wangcags@126.com
  • 基金资助:
    国家自然科学基金项目(41572169,40725007,41202136);中国地质调查局项目(12120114021601,12120114021401,12120114061901)

Age, Petrogenesis and Their Constraints on Regional Crustal Evolution of Late Neoarchean Gneisses in Southeast Jilin Province

Wang Chaoyang1, Meng En1, Li Zhuang2, Li Yanguang3, Jin Mengqi3   

  1. 1. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
    2. College of Geosciences, China University of Petroleum, Beijing 102249, China;
    3. Xi'an Center of Geological Survey, China Geological Survey, Xi'an 710054, China
  • Received:2017-12-20 Online:2018-05-26 Published:2018-05-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41572169, 40725007, 41202136) and Project of China Geological Survey (12120114021601, 12120114021401, 12120114061901)

摘要: 吉林省东南部通化地区广泛出露早前寒武纪花岗质片麻岩类,其岩石组成、形成时代和成因对深化认识华北克拉通东北缘早期地壳形成演化历史具有重要意义。本文系统的岩石学、锆石U-Pb年代学、元素和Lu-Hf同位素地球化学等研究结果表明,这些花岗质片麻岩类按照SiO2质量分数总体可划分为高硅和低硅两组:前者主要由二长花岗质片麻岩、奥长花岗质片麻岩及英云闪长质片麻岩组成,其原岩形成于2 549~2 557 Ma;而后者由石英二长闪长质片麻岩及花岗闪长岩质片麻岩组成,其原岩形成于2 534~2 552 Ma;并且两组岩石都含有约2 600 Ma的捕获锆石,共同遭受了约2 500 Ma变质作用的影响。地球化学分析结果显示,低硅岩组具有较高的MgO、CaO、Na2O质量分数,属于高钾—中钾钙碱性系列,并且富集LREE、亏损HREE和HFSE;与之相比,高硅岩组则具有较低的MgO和CaO质量分数,显示更强烈的轻、重稀土元素分馏以及Nb、Ta、P、Ti等亏损的特征;但两者均具有较弱的正或负Eu异常。结合区域最新研究成果,认为研究区低硅和高硅两组岩石应具有相同的源区,其形成可能与大洋板片俯冲、岩浆底侵引起的地壳部分熔融作用有关。此外,两组岩石具有相似的εHft)值(2.72~7.95)和模式年龄(2.86~2.55 Ga),暗示区域主要存在新太古代晚期地壳生长事件;结合区域内变质火山岩的研究进展,认为吉林省东南部通化地区花岗质片麻岩类可能形成于活动大陆边缘的构造背景。

关键词: 吉林省东南部, 花岗质片麻岩, 新太古代晚期, 地球化学, 岩石成因

Abstract: The Early Precambrian granitic gneiss are widely distributed in Tonghua in southeast Jilin Province. The lithological assemblages, ages and petrogenesis of these granitic gneiss are informative to the formation and evolution of the early crust in the northeastern margin of the North China craton. Based on the systematic petrology, zircon U-Pb chronology, element and Lu-Hf isotopic geochemistry results, we divided these granitic gneisses into high silicon group and low silicon group according to their SiO2 contents. The former is mainly composed of monzogranite gneisses, trondhjemite gneisses and tonalite gneisses, and the magmatic precursors was emplaced at 2 549-2 557 Ma. While the latter is composed of quartz-monzonitic diorite gneisses and granodiorites gneisses, and their protolith may be formed at 2 534-2 552 Ma. The both groups contain zircons captured at ca. 2 600 Ma, and suffered from the metamorphism for ca. 2 500 Ma. The geochemical data show that the low silicon group is rich in MgO, CaO and Na2O, belonging to the high-medium K calc-alkaline series, and has the feature of higher contents of LREE, but lower contents of HREE and HFSE. In contrast, the high silicon group has the lower MgO and CaO, and exhibit a stronger fractionation between the light and heavy rare earth elements, and the elements of Nb, Ta, P, Ti are depleted. The two groups show the weak positive or negative Eu anomalies. In combination with the regional geological data in this study, we believe that the two groups were derived from the same source, and their formation may be related to the ocean plate subduction through a partial melting of the crust caused by the magma underplating. Moreover, the two groups have similar εHf(t) values (2.72 to 7.95) and model age (2.86 to 2.55 Ga), which suggests that a crustal growth occurred in the study area in the Late Neoarchean. According to the research progress of metamorphic volcanic rocks in the region, we consider that the granitic gneisses in Tonghua may be formed at an active continental margin.

Key words: southeast Jilin Province, granitic gneisses, Late Neoarchean, geochemistry, petrogenesis

中图分类号: 

  • P588.345
[1] Smithies R H, Champion D C, Van Kranendonk M J. Formation of Paleoarchean Continental Crust Through Infracrustal Melting of Enriched Basalt[J]. Earth and Planetary Science Letters, 2009, 281(3):298-306.
[2] Moyen J F, Martin H. Forty Years of TTG Research[J]. Lithos, 2012, 148:312-336.
[3] Cawood P A, Hawkesworth C J, Dhuime B. The Con-tinental Record and the Generation of Continental Crust[J]. Geological Society of American Bulletin, 2013, 125(1/2):14-32.
[4] 刘树文,王伟,白翔,等. 前寒武纪地球动力学:Ⅶ:早期大陆地壳的形成与演化[J]. 地学前缘, 2015, 22(6):97-108. Liu Shuwen, Wang Wei, Bai Xiang, et al. Precambrian Geodynamics:Ⅶ:Formation and Evolution of Early Continental Crust[J]. Earth Science Frontiers, 2015, 22(6):97-108.
[5] Belousova E A, Kostitsyn Y A, Griffin W L, et al. The Growth of the Continental Crust:Constraints from Zircon Hf-Isotope Data[J]. Lithos, 2010, 119(3/4):457-466.
[6] Dhuime B, Wuestefeld A, Hawkesworth C J. Emer-gence of Modern Continental Crust About 3 Billion Years Ago[J]. Nature Geoscience, 2015, 8(7):552-555.
[7] Mints M V, Belousova E A, Konilov L M, et al. Mesoarchean Subduction Processes:2.87 Ga Eclogites from the Kola Peninsula, Russia[J]. Geology, 2010, 38(8):739-742.
[8] Nutman A P, Bennett V C, Friend C R L, et al. Mesoarchaean Collision of Kapisilik Terrane 3070 Ma Juvenile Arc Rocks and >3600 Ma Isukasia Terrane Continental Crust (Greenland)[J]. Precambrian Research, 2015, 258:146-160.
[9] Santosh M, Teng X M, He X F, et al. Discovery of Neoarchean Suprasubduction Zone Ophiolite Suite from Yishui Complex in the North China Craton[J]. Gondwana Research, 2015, 38:1-27.
[10] Wan Y S, Dong C Y, Liu D Y, et al. Zircon Ages and Geochemistry of Late Neoarchean Syenogranites in the North China Craton:A Review[J]. Precambrian Research, 2012, 222/223:265-289.
[11] Wan Y S, Ma M Z, Dong C Y, et al. Widespread Late Neoarchean Reworking of Meso-To Paleoarchean Continental Crust in the Anshan-Benxi Area, North China Craton, as Documented by U-Pb-Nd-Hf-O Isotopes[J]. American Journal of Science, 2015, 315(7):620-670.
[12] Wang W, Liu S W, Santosh M, et al. Neoarchean Intra-Oceanic Arc System in the Western Liaoning Province:Implications for the Early Precambrian Crust-Mantle Geodynamic Evolution of the Eastern Block of the North China Craton[J]. Earth-Science Reviews, 2015, 150:329-364.
[12] Wang W, Liu S W, Cawood P A, et al. Late Neo-archean Subduction-Related Crustal Growth in the Northern Liaoning Region of the North China Craton:Evidence from~2.55 to 2.50 Ga Granitoid Gneisses[J]. Precambrian Research, 2016, 281:200-223.
[14] Liu S W, Pan Y M, Li J H, et al. Geological and Isotopic Geochemical Constraints on the Evolution of the Fuping Complex, North China Craton[J]. Precambrian Research, 2002, 117(1):41-56.
[15] Liu S W, Pan Y M, Xie Q L, et al. Archean Geo-dynamics in the Central Zone, North China Craton:Constraints from Geochemistry of Two Contrasting Series of Granitoids in the Fuping and Wutai Complexes[J]. Precambrian Research, 2004, 130(1):229-249.
[16] Wang Z H, Wilde S A, Wang K Y, et al. A MORB-Arc Basalt-Adakite Association in the 2.5 Ga Wutai Greenstone Belt:Late Archean Magmatism and Crustal Growth in the North China Craton[J]. Precambrian Research, 2004, 131(3/4):323-343.
[17] Wang W, Liu S W, Wilde S A, et al. Petrogenesis and Geochronology of Precambrian Granitoid Gneisses in Western Liaoning Province:Constraints on Neoarchean to Early Paleoproterozoic Crustal Evolution of North China Craton[J]. Precambrian Research, 2012, 222/223(3):290-311.
[18] Wang W, Liu S W, Santosh M, et al. Zircon U-Pb-Hf Isotopes and Whole-Rock Geochemistry of Granitoid Gneisses in the Jianping Gneissic Terrane, Western Liaoning Province:Constraints on the Neoarchean Crustal Evolution of the North China Craton[J]. Precambrian Research, 2013, 224:184-221.
[19] Zhang X H, Yuan L L, Xue F H, et al. Contrasting Triassic Ferroan Granitoids from Northwestern Liaoning, North China:Magmatic Monitor of Mesozoic Decratonization and a Craton-Orogen Boundary[J]. Lithos, 2012, 144/145(7):12-23.
[20] Nutman A P, Wan Y S, Du L L, et al. Multistage Late Neoarchaean Crustal Evolution of the North China Craton, Eastern Hebei[J]. Precambrian Research, 2011, 189(1/2):43-65.
[21] Peng P, Wang C, Wang X P, et al. Qingyuan High-Grade Granite-Greenstone Terrain in the Eastern North China Craton:Root of a Neoarchaean Arc[J]. Tectonophysics, 2015, 662:7-21.
[22] Liu D Y, Nutman A P, Compston W, et al. Rem-mants of ≥ 3800 Ma Crust in the Chinese Part of the Sino-Korean Craton[J]. Geology, 1992, 20(4):339-342.
[23] Liu D Y, Wilde S A, Wan Y S, et al. New U-Pb and Hf Isotopic Data Confirm Anshan as the Oldest Preserved Segment of the North China Craton[J]. American Journal of Science, 2008, 308(3):200-231.
[24] Liu S W, Pan Y M, Xie Q L, et al. Geochemistry of the Paleoproterozoic Nanying Granitic Gneisses in the Fuping Complex:Implications for the Tectonic Evolution of the Central Zone, North China Craton[J]. Journal of Asian Earth Sciences, 2005, 24(5):643-658.
[25] Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited[J]. Precambrian Research, 2005, 136(2):177-202.
[26] Zhao G C, Cawood P A, Li S Z, et al. Amalgamation of the North China Craton:Key Issues and Discussion[J]. Precambrian Research, 2012, 222/223(12):55-76.
[27] Zhai M G, Santosh M. The Early Precambrian Ody-ssey of the North China Craton:A Synoptic Overview[J]. Gondwana Research, 2011, 20(1):6-25.
[28] Kusky T M, Li J H. Paleoproterozoic Tectonic Evo-lution of the North China Craton[J]. Journal of Asian Earth Sciences, 2003, 22(4):383-397.
[29] 翟明国, 彭澎. 华北克拉通古元古代构造事件[J]. 岩石学报, 2007, 23(11):2665-2682. Zhai Mingguo, Peng Peng. Paleoproterozoic Events in North China Craton[J]. Acta Petrologica Sinica, 2007, 23(11):2665-2682.
[30] Kröner A, Wilde S A, Zhao G C, et al. Zircon Geo-chronology and Metamorphic Evolution of Mafic Dykes in the Hengshan Complex of Northern China:Evidence for Late Palaeoproterozoic Extension and Subsequent High-Pressure Metamorphism in the North China Craton[J]. Precambrian Research, 2006, 146(1/2):45-67.
[31] Liu S W, Zhao G C, Wilde S A, et al. Th-U-Pb Monazite Geochronology of the Lüliang and Wutai Complexes:Constraints on the Tectonothermal Evolution of the Trans-North China Orogen[J]. Precambrian Research, 2006, 148(3):205-224.
[32] Wilde S A, Zhao G C. Archean to Paleoproterozoic Evolution of the North China Craton[J]. Journal of Asian Earth Sciences, 2005, 24(5):519-522.
[33] Zhao G C, Wilde S A, Sun M, et al. SHRIMP U-Pb Zircon Geochronology of the Huai'an Complex:Constraints on Late Archean to Paleoproterozoic Custal Accretion and Collision of the Trans-North China Orogen[J]. American Journal of Science, 2008, 308(3):270-303.
[34] Zhao G C, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited[J]. Precambrian Research, 2005, 136(2):177-202.
[35] Santosh M, Kusky T. Origin of Paired High Pre-ssure-Ultrahigh-Temperature Orogens:A Ridge Subduction and Slab Window Model[J]. Terra Nova, 2010, 22(1):35-42.
[36] Zhao G C, Sun M, Wilde S A, et al. Assembly, Accretion and Breakup of the Paleo-Mesoproterozoic Columbia Supercontinent:Records in the North China Craton[J]. Gondwana Research, 2003, 6(3):417-434.
[37] 赵国春. 华北克拉通基底主要构造单元变质作用演化及其若干问题讨论[J]. 岩石学报, 2009, 25(8):1772-1792. Zhao Guochun. Metamorphic Evolution of Major Tectonic Units in the Basement of the North China Craton:Key Issues and Discussion[J]. Acta Petrologica Sinica, 2009, 25(8):1772-1792.
[38] Zhao G C, Wilde S A, Guo J, et al. Single Zircon Grains Record Two Paleoproterozoic Collisional Events in the North China Craton[J]. Precambrian Research, 2010, 177(3/4):266-276.
[39] Geng Y S, Du L L, Ren L D. Growth and Reworking of the Early Precambrian Continental Crust in the North China Craton:Constraints from Zircon Hf Isotopes[J]. Gondwana Research, 2012, 21(2/3):517-529.
[40] Wu F Y, Zhao G C, Wilde S A. Nd Isotopic Con-straints on Crustal Formation in the North China Craton[J]. Journal of Asian Earth Sciences, 2005, 24(5):523-545.
[41] Zhao G C, Wilde S A, Cawood P A, et al. Thermal Evolution of the Archaean Basement Rocks from the Eastern Part of the North China Craton and Its Bearing on Tectonic Setting[J]. International Geology Review, 1998, 40(6):706-721.
[42] Geng Y S, Liu F L, Yang C H. Magmatic Event at the End of the Archean in Eastern Hebei Province and Its Geological Implication[J]. Acta geologica Sinica (English Edition), 2006, 80(6):819-833.
[43] Wu M L, Zhao G C, Sun M, et al. Petrology and P-T Path of the Yishui Mafic Granulites:Implications for Tectonothermal Evolution of the Western Shandong Complex in the Eastern Block of the North China Craton[J]. Precambrian Research, 2012, 222/223(1):312-324.
[44] Wu M L, Zhao G C, Sun M, et al. Zircon U-Pb Geochronology and Hf Isotopes of Major Lithologies from the Jiaodong Terrane:Implications for the Crustal Evolution of the Eastern Block of the North China Craton[J]. Lithos, 2014, 190/191(6):71-84
[45] Tang Li, Santosh M, Tsunogae T, et al. Late Neo-archean Arc Magmatism and Crustal Growth Associated with Microblock Amalgamation in the North China Craton:Evidence from the Fuping Complex[J]. Lithos, 2016, 248/249/250/251:324-338.
[46] 吉林省地质矿产局. 吉林省区域地质志[M]. 北京:地质出版社, 1991. Jilin Bureau of Geology and Mineral Resources. Regional Geology of Jilin Province[M]. Beijing:Geological Publishing House, 1991.
[47] Guo B R, Liu S W, Zhang J, et al. Zircon U-Pb-Hf Isotope Systematics and Geochemistry of Helong Granite-Greenstone Beltin Southern Jilin Province, China:Implications for Neoarchean Crustal Evolution of the Northeastern Margin of North China Craton[J]. Precambrian Research, 2015, 271:254-277.
[48] Guo B R, Liu S W, Zhang J, et al. Neoarchean An-dean-Type Active Continental Margin Along the Northeastern North China Craton:Geochemical and Geochronological Evidence from Metavolcanic Rocks in the Jiapigou Granite-Greenstone Belt, Southern Jilin Province[J]. Precambrian Research, 2016, 285:147-169.
[49] Guo B R, Liu S W, Santosh M, et al. Neoarchean Arc Magmatism and Crustal Growth in the North-Eastern North China Craton:Evidence from Granitoid Gneisses in the Southern Jilin Province[J]. Precambrian Research, 2017, 303:30-53.
[50] Li S Z, Zhao G C, Sun M, et al. Deformation History of the Paleoproterozoic Liaohe Assemblage in the Eastern Block of the North China Craton[J]. Journal of Asian Earth Sciences, 2005, 24(5):659-674.
[51] Li S Z, Zhao G C, Liu X, et al. Structural Evolution of the Southern Segment of the Jiao-Liao-Ji Belt, North China Craton[J]. Precambrian Research, 2012, 200(4):59-73.
[52] Li S Z, Zhao G C. SHRIMP U-Pb Zircon Geoch-ronology of the Liaoji Granitoids:Constraints on the Evolution of the Paleoproterozoic Jiao-Liao-Ji Belt in the Eastern Block of the North China Craton[J]. Precambrian Research, 2007, 158(1/2):1-16
[53] 沈保丰. 辽北-吉南太古宙地质及成矿[M]. 北京:地质出版社, 1994:1-184. Shen Baofeng. Archean Geology and Mineralization of Northern Liaoning and Southern Jilin Province[M]. Beijing:Geological Publishing House, 1994:1-184.
[54] 李俊建,沈保丰,李双保,等. 辽北-吉南早前寒武纪大陆壳的地质特征和演化[J]. 中国区域地质, 1998, 17:30-38. Li Junjian, Shen Baofeng, Li Shuangbao, et al. Geological Feature and Evolution of the Early Precambrian Continental Crust in Northern Liaoning Province and Southern Jilin Province[J]. Regional Geology of China, 1998, 17:30-38.
[55] 葛文春,孙德有,林强,等. 吉林太古宙花岗岩类构造-岩浆演化[J]. 地质找矿论丛, 1996, 11(2):35-43. Ge Wenchun, Sun Deyou, Lin Qiang, et al. Tectonic and Magmaic Evolution of the Archean Granitic Rocks in Jilin Province[J]. Contributions to Geology and Mineral Resources Research, 1996, 11(2):35-43.
[56] 孟恩,王朝阳,刘超辉,等. 辽东半岛东南部南辽河群变火山岩的时代、成因及其对区域构造演化的制约[J]. 吉林大学学报(地球科学版), 2017, 47(6):1589-1619. Meng En, Wang Chaoyang, Liu Chaohui, et al. Geochronology, Petrogenesis and Constraints on Regional Tectonic Evolution of the Meta-Volcanic Rocks in Southeastern Liaodong Peninsula[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(6):1589-1619.
[57] Ge W C, Zhao G C, Sun D Y, et al. Metamorphic P-T Path of the Southern Jilin Complex:Implications for Tectonic Evolution of the Eastern Block of the North China Craton[J]. International Geololgy Review, 2003, 45(11):1029-1043.
[58] 张景枝,张永焕. 吉林省早前寒武纪地质研究[J]. 吉林地质, 1998, 17(3):22-32. Zhang Jingzhi, Zhang Yonghuan. A Study on the Early Precambrian Geology of Jilin Province[J]. Jilin Geology, 1998, 17(3):22-32.
[59] 孙德有,葛文春,吴福元,等. 吉林南部太古宙英云闪长质片麻岩类的特征及成因[J]. 吉林大学学报(地球科学版), 1995, 25(4):375-380. Sun Deyou, Ge Wenchun, Wu Fuyuan, et al. Geological Characteristics and Petrologenesis of the Archean Tonalitic Gneisses in the South of Jilin Province[J]. Journal of Jilin University (Earth Science Edition), 1995, 25(4):375-380.
[60] 林强,吴福元,刘树文,等. 华北地台东部太古宙花岗岩.[M]. 北京:科学出版社, 1992:220-222. Lin Qiang, Wu Fuyuan, Liu Shunwen, et al. Archean Granites in Eastern North China Craton[M]. Beijing:Science Press, 1992:220-222.
[61] 卢良兆. 胶辽地块早前寒武纪变质地质与构造演化[J]. 长春地质学院学报, 1996, 26(6):25-32. Lu Liangzhao. The Precambrian Metamorphic Geology and Tectonic Evolution of the Jiao-Liao Massif[J]. Journal of Changchun College of Geology, 1996, 26(6):25-32.
[62] Meng E, Wang C Y, Yang H, et al. Paleoproterozoic Metavolcanic Rocks in the Ji'an Group and Constraints on the Formation and Evolution of the Northern Segment of the Jiao-Liao-Ji Belt, China[J]. Precambrian Research, 2017, 294:133-150.
[63] Meng E, Wang C Y, Li Y G, et al. Zircon U-Pb-Hf Isotopic and Whole-Rock Geochemical Studies of Paleoproterozoic Metasedimentary Rocks in the North Zone of the Northern Segment of the Jiao-Liao-Ji Belt, China:Implications for Provenance and Regional Tectonic Evolution[J]. Precambrian Research, 2017, 298:472-489.
[64] Meng E, Wang C Y, Li Z, et al. Paleoproterozoic Metasedimentary Rocks in the Ji'an Group and Its Tectonic Significants for the Liao-Ji Belt, North China Craton:Constraints from the Whole-Rock Geochemistry, New Zircon U-Pb Dates, and in Situ Lu-Hf Isotope Data[J]. Geological Magazine, 2018, 155(1):149-173.
[65] 李三忠,郝德峰,韩宗珠,等. 胶辽地块古元古代构造-热演化与深部过程[J]. 地质学报, 2003, 77(3):328-340. Li Sanzhong, Hao Defeng, Han Zongzhu, et al. Paleoproterozoic Tectonothermal Evolution and Deep Crustal Processes of the Jiao-Liao Block[J]. Acta Geologica Sinica, 2003, 77(3):328-340.
[66] 吴福元,葛文春,孙德有,等. 吉林南部太古代花岗岩Sm-Nd, Rb-Sr同位素年龄测定[J]. 岩石学报, 1997, 13(4):499-506. Wu Fuyuan, Ge Wenchun, Sun Deyou, et al. The Sm-Nd, Rb-Sr Isotopic Ages of the Archean Granites in Southern Jilin Province[J]. Acta Petrologica Sinica, 1997, 13(4):499-506.
[67] Wu F Y, Zhao G C, Wilde S A, et al. Nd Isotopic Constraints on Crustal Formation in the North China Craton[J]. Journal of Asian Earth Sciences, 2005, 24(5):523-545.
[68] 李鹏川,郭巍,关庆彬,等. 华北克拉通东北部新太古代晚期地壳生长:来自板石沟表壳岩年代学和Hf同位素的证据[J]. 岩石学报, 2016, 32(9):2839-2855. Li Pengchuan, Guo Wei, Guan Qingbin, et al. Late Neoarchean Crustal Growth in the Northeast of the North China Craton:Evidence from the Geochronology and Hf Isotope Composition of Banshigou Supracrustal Rocks[J]. Acta Petrologica Sinica, 2016, 32(9):2839-2855.
[69] Anderson T. Correction of Common Lead in U-Pb Analyses that Do not Report 204Pb[J]. Chemical Geology, 2002, 192(1/2):59-79.
[70] Ludwig K R. Users Manual for Isoplot/Ex (rev. 2.49):A Geochronological Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center, Special Publication, 2001, 1:55.
[71] Song S, Niu Y, Wei C, et al. Metamorphism, Ana-texis, Zircon Ages and Tectonic Evolution of the Gongshan Block in the Northern Indochina Continent:An Eastern Extension of the Lhasa Block[J]. Lithos, 2010, 120(3/4):327-346.
[72] Liu Y, Hu Z, Gao S, et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard[J]. Chemical Geology, 2008, 257(1/2):34-43.
[73] Wu F Y, Yang Y H, Xie L W. Hf Isotopic Com-positions of Standard Zircons and Baddeleyites Used in U-Pb Geochronology[J]. Chemical Geology, 2006, 234(1/2):105-126.
[74] 侯可军,李延河,邹天人,等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J]. 岩石学报, 23(10):2595-2604. Hou Kejun, Li Yanhe, Zou Tianren, et al. Laser Ablation-MC-ICP MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications[J]. Acta Petrologica Sinica, 2007, 23(10):2595-2604.
[75] Elhlou S, Belousova E, Griffin W L, et al. Trace Element and Isotopic Composition of GJ-Red Zircon Standard by Laser Ablation[J]. Geochimica Et Cosmochimica Acta, 2006, 70(18):158.
[76] Scherer E, Münker C, Mezger K. Calibration of the Lutetium-Hafnium Clock[J]. Science, 2001, 293:683-687.
[77] Blichert-Toft, Albarède. The Lu-Hf Isotope Geo-chemistry of Chondrite and the Evolution of the Mantle-Crust System[J]. Earth and Planetary Science Letters, 1997, 148(1/2):243-258.
[78] Griffin W L, Pearson N J, Belousonva E, et al. The Hf Isotope Composition of Cratonic Mantle:LA-MC-ICP-MS Analysis of Zircon Megacrysts in Kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1):133-147.
[79] Amelin Y, Lee D C, Halliday A N, et al. Nature of the Earth's Earliestcrust from Hafnium Isotopes in Single Detrital Zircons[J]. Nature, 1999, 399:252-255.
[80] Dubińska E, Bylina P, Kozłowski A. U-Pb Dating of Serpentinization:Hydrothermal Zircon from a Metasomatic Rodingite Shell (Sudetic Ophiolite, SW Poland)[J]. Chemical Geology, 2004, 203(3/4):183-203.
[81] Tomaschek F. Zircons from Syros, Cyclades, Greece-Recrystallization and Mobilization of Zircon During High Pressure Metamorphism[J]. Journal of Petrology, 2003, 44(11):1977-2002.
[82] Belousova E A, Griffin W L, O'Reilly S Y, et al. Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5):602-622.
[83] Hoskin P W O, Ireland T R. Rare Earth Element Chemistry of Zircon and Its Use as a Provenance Indicator[J]. Geology, 2000, 28(7):627-630.
[84] Humphris S E, Thompson G. Trace Element Mobi-lity During Hydrothermal Alteration of Oceanic Basalts[J]. Geochimica et Cosmochimica Acta, 1978, 42(1):127-136.
[85] Pearce J A. Geochemical Fingerprinting of the Earth's Oldest Rocks[J]. Geology, 2014, 42:175-176.
[86] Polat A, Hofmann A W. Alteration and Geochemical Patterns in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland[J]. Precambrian Research, 2003, 126(3/4):197-218.
[87] Taylor S R, McLennan S M. The Continental Crust:Its Composition and Evolution, an Examination of the Geochemical Record Preserved in Sedimentary Rocks[J]. Journal of Geology, 1985, 94(4):632-633.
[88] Boynton W V. Geochemistry of the Rare Earth Elements:Meteorite Studies[J]. Developments in Geochemistry, 1984, 2(2):63-114.
[89] Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J]. Geological Society of Special Publication London, 1989, 42(1):313-345.
[90] Barker F. Trondhjemite:Definition, Environment and Hypotheses of Origin[M]. Amsterdam:Barker F, 1979:1-12.
[91] Defant M J, Drummond M S. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere[J]. Nature, 1990, 347:662-665.
[92] Kinny P D, Maas R. Lu-Hf and Sm-Nd Isotope Systems in Zircon[J]. Zircon Reviews in Mineralogy and Geochemistry, 2003, 53(1):327-341.
[93] Kinny P D, Compston W, Williams I S. A Reco-nnaissance Ion-Probe Study of Hafnium Isotopes in Zircons[J]. Geochimica et Cosmochimica Acta, 1991, 55(3):849-859.
[94] 万渝生,宋彪,杨淳,等. 辽宁抚顺-清原地区太古宙岩石SHRIMP锆石U-Pb年代学及其地质意义[J]. 地质学报, 2005, 79(1):78-87. Wan Yusheng, Song Biao, Yang Chun, et al. Zircon SHRIMP U-Pb Geochronology of Archean Rocks from the Fushun-Qingyuan Area, Liaoning Province and Its Geological Significance[J]. Acta Geologica Sinica, 2005, 79(1):78-87.
[95] 万渝生,宋彪,耿元生,等. 辽北抚顺清原地区太古宙基底地球化学组成特征及其地质意义[J]. 地质论评, 2005, 51(2):128-137. Wan Yusheng, Song Biao, Geng Yuansheng, et al. Geochemical Characteristics of Archean Basement in the Fushun-Qingyuan Area, Northern Liaoning Province and Its Geological Significance[J]. Geological Review, 2005, 51(2):128-137.
[96] Wang C Y, Meng E, Li Y G, et al. A New Discovery of~2.7 Ga Granitic Magmatism in Southeastern Jilin Province, China[J]. Acta Geologica Sinica (English Edition), 2017, 91(5):1919-1923.
[97] Grant M L, Wilde S A, Wu F Y, et al. The App-lication of Zircon Cathodoluminescence Imaging, Th-U-Pb Chemistry and U-Pb Ages in Interpreting Discrete Magmatic and High-Grade Metamorphic Events in the North China Craton at the Archean/Proterozoic Boundary[J]. Chemical Geology, 2009, 261(1):155-171.
[98] Wu M L, Lin S F, Wan Y S, et al. Crustal Evolution of the Eastern Block in the North China Craton:Constraints from Zircon U-Pb Geochronology and Lu-Hf Isotopes of the Northern Liaoning Complex[J]. Precambrian Research, 2016, 275(4):35-47.
[99] Martin H, Smithies R H, Rapp R, et al. An Ove-rview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid:Relationships and Some Implications for Crustal Evolution[J]. Lithos, 2005, 79(1):1-24.
[100] Davidson J, Turner S, Handley H, et al. Amphi-bole "Sponge" in Arc Crust?[J]. Geology, 2007, 35(9):787-790.
[101] Smithies R H, Champion D C. The Archaean High-Mg Diorite Suite:Links to Tonalite-Trondhjemite-Granodiorite Magmatism and Implications for Early Archaean Crustal Growth[J]. Journal of Petrology, 2000, 41(12):1653-1671.
[102] Rollinson H R. Using Geochemical Data:Evaluat-ion, Presentation, Interpretation[M]. London:Pearson Education Limited, 1993:108-111.
[103] Killian R, Stern C R. Constraints on the Interaction between Slab Melts and the Mantle Wedge from Adakitic Glass in Peridotite Xenoliths[J]. Acoustics Speech and Signal Processing Newsletter IEEE, 2002, 14(14):25-36.
[104] Spandler C, Pirard C. Element Recycling from Subducting Slabs to Arc Crust:A Review[J]. Lithos, 2013, 170/171(6):208-223.
[105] Martin H, Smithies R H, Rapp R, et al. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid:Relationships and Some Implications for Crustal Evolution[J]. Lithos, 2005, 79(1):1-24.
[106] Drummond M S, Defant M J. A Model for Trondhjemite-Tonalite-Dacite Genesis and Crustal Growth via Slab Melting:Archean to Modern Comparisons[J]. Journal of Geophysical Research:Solid Earth, 1990, 95(B13):21503-21521.
[107] Douce Patiño, Alberto E. Experimental Generation of Hybrid Silicic Melts by Reaction of High-Al Basalt with Metamorphic Rocks[J]. Journal of Geophysical Research Atmospheres, 1995, 1001(B8):15623-15640.
[108] Altherr R, Holl A, Hegner E. High-Potassium, Calc-Alkaline I-Type Plutonism in the European Variscides:Northern Vosges (France) and Northern Schwarzwald (Germany)[J]. Lithos, 2000, 50(1):51-73.
[109] Drummond M S, Defant M J, Kepezhinskas P K. Petrogenesis of Slab-Derived Trondhjemite-Tonalite-Dacite/Adakite Magmas[J]. Transactions of the Royal Society of Edinburgh Earth Science, 1996, 87(1/2):205-215.
[110] Rapp R P, Watson E B. Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling[J]. Journal of Petrology, 1995, 36(4):891-931.
[111] Condie K C. High Field Strength Element Ratios in Archean Basalts:A Window to Evolving Sources of Mantle Plumes?[J]. Lithos, 2005, 79(3/4):491-504.
[112] Stevenson R, Henry P, Gariépy C. Assimilation-Fractional Crystallization Origin of Archean Sanukitoid Suites:Western Superior Province, Canada[J]. Precambrian Research, 1999, 96:83-99.
[113] Moyen J F. High Sr/Y and La/Yb Ratios, the Meaning of the "Adakitic Signature"[J]. Lithos, 2009, 112(3/4):556-574.
[114] Heilimo E, Jaana H, Andersen T, et al. Neoa-rchean Crustal Recycling and Mantle Metasomatism:Hf-Nd-Pb-O Isotope Evidence from Sanukitoids of the Fennoscandian Shield[J]. Precambrian Research, 2013, 228:250-266.
[1] 张强, 丁清峰, 宋凯, 程龙. 东昆仑洪水河铁矿区狼牙山组千枚岩碎屑锆石U-Pb年龄、Hf同位素及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1085-1104.
[2] 郭春涛, 李如一, 陈树民. 塔里木盆地古城地区鹰山组白云岩稀土元素地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1121-1134.
[3] 崔亚川, 于介江, 杨万志, 张元厚, 崔策, 于介禄. 东天山觉罗塔格带黄山地区角闪辉长岩岩体的年代学、地球化学特征及岩石成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1105-1120.
[4] 赵希林, 姜杨, 邢光福, 于胜尧, 彭银彪, 黄文成, 王存智, 靳国栋. 陈蔡早古生代俯冲增生杂岩对华夏与扬子地块拼合过程的指示意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1135-1153.
[5] 尹业长, 郝立波, 赵玉岩, 石厚礼, 田午, 张豫华, 陆继龙. 冀东高家店和蛇盘兔花岗岩体:年代学、地球化学及地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(2): 574-586.
[6] 齐天骄, 薛春纪, 许碧霞. 新疆昭苏布合塔铜(金)矿化区花岗质岩石锆石U-Pb年龄、地球化学特征及其成因[J]. 吉林大学学报(地球科学版), 2018, 48(1): 132-144.
[7] 孙凡婷, 刘晨, 邱殿明, 鲁倩, 贺云鹏, 张铭杰. 大兴安岭东坡小奎勒河中基性侵入岩成因及地球动力学意义:锆石U-Pb年代学、元素和Hf同位素地球化学证据[J]. 吉林大学学报(地球科学版), 2018, 48(1): 145-164.
[8] 孟恩, 王朝阳, 刘超辉, 施建荣, 李艳广. 辽东半岛东南部南辽河群变质火山岩的时代、成因及其对区域构造演化的制约[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1589-1619.
[9] 张超, 崔芳华, 张照录, 耿瑞, 宋明春. 鲁西金岭地区含矿闪长岩体成因:来自锆石U-Pb年代学和地球化学证据[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1732-1745.
[10] 施珂, 张达玉, 丁宁, 王德恩, 陈雪锋. 皖南逍遥岩体的年代学、地球化学特征及其成因分析[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1746-1762.
[11] 谭洪旗, 刘玉平. 滇东南猛洞岩群斜长角闪岩成因及其构造意义[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1763-1783.
[12] 陈治军, 任来义, 贺永红, 刘护创, 宋健. 银额盆地哈日凹陷银根组优质烃源岩地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1352-1364.
[13] 王师捷, 徐仲元, 董晓杰, 杜洋, 崔维龙, 王阳. 华北板块北缘中段二叠纪的构造属性:来自火山岩锆石U-Pb年代学与地球化学的制约[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1442-1457.
[14] 许中杰, 蓝艺植, 程日辉, 李双林. 句容地区下奥陶统仑山组海平面变化的碳酸盐岩地球化学记录[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1458-1470.
[15] 赵院冬, 车继英, 吴大天, 许逢明, 赵君, 李士超. 小兴安岭西北部早—中侏罗世TTG花岗岩年代学、地球化学特征及构造意义[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1119-1137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!