吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (2): 581-593.doi: 10.13278/j.cnki.jjuese.201602302
贲放1, 刘云鹤1, 黄威1, 徐驰2
Ben Fang1, Liu Yunhe1, Huang Wei1, Xu Chi2
摘要:
由于受到空气波的影响,浅海海洋可控源电磁数据对海底储油层的反映较弱,如何对浅海数据进行处理和解释一直是海洋电磁理论研究的热点。随着近年来海洋电磁理论的不断完善,浅海数据已经可以被较好地处理与反演,但是其解释水平仍然受基本理论研究不足的制约。针对这一现状,本文开展了海底电各向异性对浅海数据影响规律的研究。具体方法为:利用欧拉旋转建立不同的海底电性各向异性模型,然后采用交错网格有限差分法计算浅海海洋可控源电磁响应,最后通过分析同线情况下电场Ex分量的振幅和相位曲线特征以及海底电场及电流密度分布规律,分析各向异性对浅海海洋可控源电磁响应影响的物理机制,并讨论浅海各向异性情况下海洋电磁对高阻储油层的识别能力。得出的结论为各向异性介质中的浅海海洋电磁响应特征与深海有较大区别,在进行数据的处理、反演和解释时应区别于深海情况。
中图分类号:
[1] Constable S C. Ten Years of Marine CSEM for Hydrocarbon Exploration[J]. Geophysics, 2010, 75(5):75A67-75A81.[2] Mittet R, Morten J P. The Marine Controlled-Source Electromagnetic Method in Shallow Water[J]. Geophysics, 2013, 78(2):E67-E77.[3] Andreis D, MacGregor L. Controlled-Source Electromagnetic Sounding in Shallow Water:Principles and Applications[J]. Geophysics, 2007, 73(1):F21-F32.[4] Løseth L O, Amundsen L, Jenssen A J. A Solution to the Airwave-Removal Problem in Shallow-Water Marine EM[J]. Geophysics, 2010, 75(5):A37-A42.[5] Chen J, Alumbaugh D L. Three Methods for Mitigating Airwaves in Shallow Water Marine Controlled-Source Electromagnetic Data[J]. Geophysics, 2011, 76(2):F89-F99.[6] 殷长春, 刘云鹤, 翁爱华, 等. 海洋可控源电磁法空气波研究现状及展望[J]. 吉林大学学报(地球科学版), 2012, 42(5):1506-1520. Yin Changchun, Liu Yunhe, Weng Aihua, et al. Research on Marine Controlled-Source Electromagnetic Method Airwave[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(5):1506-1520.[7] Sasaki Y. 3D Inversion of Marine CSEM and MT Data:An Approach to Shallow-Water Problem[J]. Geophysics, 2012, 78(1):E59-E65.[8] Weiss C J, Constable S. Mapping Thin Resistors and Hydrocarbons with Marine EM Methods:Part II:Modeling and Analysis in 3D[J]. Geophysics, 2006, 71(6):G321-G332.[9] Kong F N, Johnstad S E, Røsten T, et al. A 2.5D Finite-Element-Modeling Difference Method for Marine CSEM Modeling in Stratified Anisotropic Media[J]. Geophysics, 2007, 73(1):F9-F19.[10] Weidelt P. 3-D Conductivity Models:Implications of Electrical Anisotropy[J]. Three-Dimensional Electromagnetics, 1999, 7:119-137.[11] Li Y, Dai S. Finite Element Modelling of Marine Controlled-Source Electromagnetic Responses in Two-Dimensional Dipping Anisotropic Conductivity Structures[J]. Geophysical Journal International, 2011, 185(2):622-636.[12] Wiik T, Ursin B, Hokstad K. 2.5 D EM Modelling in TIV Conductive Media and the Effect of Anisotropy in Normalized Amplitude Responses[J]. Journal of Geophysics and Engineering, 2013, 10(1):015006.[13] 殷长春, 贲放, 刘云鹤, 等. 三维任意各向异性介质中海洋可控源电磁法正演研究[J]. 地球物理学报, 2014, 57(12):4110-4122. Yin Changchun, Ben Fang, Liu Yunhe, et al. MCSEM 3D Modeling for Arbitrarily Anisotropic Media[J]. Chinese Journal of Geophysics, 2014, 57(12):4110-4122.[14] Newman G A, Commer M, Carazzone J J. Imaging CSEM Data in the Presence of Electrical Anisotropy[J]. Geophysics, 2010, 75(2):F51-F61.[15] Newman G A, Alumbaugh D L. Frequency-Domain Modelling of Airborne Electromagnetic Responses Using Staggered Finite Differences[J]. Geophysical Prospecting, 1995, 43(8):1021-1042.[16] 翁爱华, 刘云鹤, 贾定宇, 等. 基于电场不连续边界条件的层状介质电磁格林函数计算[J]. 吉林大学学报(地球科学版), 2013, 43(2):603-609. Weng Aihua, Liu Yunhe, Jia Dingyu, et al. Compute Green Function from Discontinuity of Trangential Electrical Fields Inside Source Contained Boundary[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(2):603-609.[17] Yin C. MMT Forward Modeling for a Layered Earth with Arbitrary Anisotropy[J]. Geophysics, 2006, 71(3):G115-G128.[18] Weiss C J, Newman G A. Electromagnetic Induction in a Fully 3-D Anisotropic Earth[J]. Geophysics, 2002, 67(4):1104-1114.[19] Freund R W. A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems[J]. SIAM Journal on Scientific Computing, 1993, 14(2):470-482.[20] Løseth L O, Ursin B. Electromagnetic Fields in Planarly Layered Anisotropic Media[J]. Geophysical Journal International, 2007, 170(1):44-80. |
[1] | 刘明忱, 孙建国, 韩复兴, 孙章庆, 孙辉, 刘志强. 基于自适应加权广义逆矢量方向滤波估计地震同相轴倾角[J]. 吉林大学学报(地球科学版), 2018, 48(3): 881-889. |
[2] | 李建平, 翁爱华, 李世文, 李大俊, 李斯睿, 杨悦, 唐裕, 张艳辉. 基于球坐标系下有限差分的地磁测深三维正演[J]. 吉林大学学报(地球科学版), 2018, 48(2): 411-419. |
[3] | 曾昭发, 霍祉君, 李文奔, 李静, 赵雪宇, 何荣钦. 任意各向异性介质三维有限元航空电磁响应模拟[J]. 吉林大学学报(地球科学版), 2018, 48(2): 433-444. |
[4] | 殷长春, 卢永超, 刘云鹤, 张博, 齐彦福, 蔡晶. 多重网格准线性近似技术在三维航空电磁正演模拟中的应用[J]. 吉林大学学报(地球科学版), 2018, 48(1): 252-260. |
[5] | 陈辉, 尹敏, 殷长春, 邓居智. 大地电磁三维正演聚集多重网格算法[J]. 吉林大学学报(地球科学版), 2018, 48(1): 261-270. |
[6] | 李大俊, 翁爱华, 杨悦, 李斯睿, 李建平, 李世文. 地-井瞬变电磁三维交错网格有限差分正演及响应特性[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1552-1561. |
[7] | 杨海燕, 岳建华, 徐正玉, 张华, 姜志海. 覆盖层影响下典型地-井模型瞬变电磁法正演[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1527-1537. |
[8] | 王卫平, 曾昭发, 李静, 吴成平. 频率域航空电磁法地形影响和校正方法[J]. 吉林大学学报(地球科学版), 2015, 45(3): 941-951. |
[9] | 殷长春, 刘云鹤, 翁爱华, 贾定宇, 贲放. 海洋可控源电磁法空气波研究现状及展望[J]. J4, 2012, 42(5): 1506-1520. |
[10] | 周晓华, 陈祖斌, 曾晓献, 焦健. 交错网格有限差分法模拟微动信号[J]. J4, 2012, 42(3): 852-857. |
[11] | 孟庆生, 樊玉清, 张珂, 张盟. 高阶有限差分法管波传播数值模拟[J]. J4, 2011, 41(1): 292-298. |
[12] | 刘四新, 周俊峰, 吴俊军, 曾昭发, 万洪祥. 金属矿钻孔雷达探测的数值模拟[J]. J4, 2010, 40(6): 1479-1484. |
[13] | 孙章庆, 孙建国, 张东良. 2.5维起伏地表条件下坐标变换法直流电场数值模拟[J]. J4, 2010, 40(2): 425-431. |
[14] | 杨昊, 孙建国, 韩复兴, 马淑芳. 基于完全三叉树堆排序的波前扩展有限差分地震波走时快速算法[J]. J4, 2010, 40(1): 188-194. |
[15] | 孙章庆, 孙建国, 张东良. 二维起伏地表条件下坐标变换法直流电场数值模拟[J]. J4, 2009, 39(3): 528-534. |
|