吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (6): 1781-1789.doi: 10.13278/j.cnki.jjuese.201606201

• 地质工程与环境工程 • 上一篇    下一篇

高层建筑引发地面沉降模拟预测三维流固全耦合模型

付延玲, 骆祖江, 廖翔, 张建忙   

  1. 河海大学地球科学与工程学院, 南京 211100
  • 收稿日期:2016-04-27 出版日期:2016-11-26 发布日期:2016-11-26
  • 作者简介:付延玲(1964-),女,高级实验师,博士,主要从事水文地质与工程地质方面的研究与教学工作,E-mail:fyl@hhu.edu.cn,Tel:13770612421
  • 基金资助:
    河北省重大科研项目(CZCG2012055)

A Three-Dimensional Full Coupling Model to Simulate and Predict Land Subsidence Caused by High-Rise Building

Fu Yanling, Luo Zujiang, Liao Xiang, Zhang Jianmang   

  1. School of Earth Science and Engineering, Hohai University, Nanjing 211100, China
  • Received:2016-04-27 Online:2016-11-26 Published:2016-11-26
  • Supported by:
    Supported by Major Program of Science and Technolgy Foundation of Hebei Province(CZCG2012055)

摘要: 为了准确预测由高层建筑引发土体应力场和渗流场变化而导致的地面沉降,以比奥固结理论为基础,结合土体非线性流变理论,将比奥固结理论中的本构关系拓展到黏弹塑性,并考虑了土体孔隙度、渗透系数及变形参数随有效应力的动态变化关系。以河北省沧州市为例,建立了沧州市高层建筑荷载、地下水渗流与土体变形三维流固全耦合数学模型。在对模型进行识别、验证的基础上,模拟预测了沧州市在地下水停采、仅存在高层建筑荷载的影响下,从2010年12月底到2025年12月底逐年的各含水层组地下水流场变化特征和地面沉降发展趋势。结果表明:沧州市由高层建筑荷载引发的最大地面沉降量为40.57 mm,最大地面沉降速率为2.7 mm/a,位于沧州市区。

关键词: 高层建筑荷载, 地面沉降, 比奥固结理论, 地下水渗流, 三维全耦合数学模型, 河北沧州

Abstract: In order to predict the land subsidence accurately caused by high-rise building which led to the changing of stress field and seepage flow field, the constitutive relation was extended to viscoelastic plasticity based on Biot's consolidation theory and combined with the nonlinear rheological theory of soil, and the dynamic change relationship of mechanical parameters and hydraulic parameters were also took into account. A three-dimensional full coupling mathematic model of Cangzhou combined with high-rise building load, groundwater seepage and deformation of soil settlement was set up. Based on identification and verification of the model, the characteristics of each aquifer groundwater flow field and developing tendency of land subsidence from the end of December 2010 to the end of December 2025 was predicted with the condition that exploitation of the groundwater in the study area was stopped. The results show that:the maximum of land subsidence caused by high-rise building in Cangzhou is 40.57mm, and the maximum rate of land subsidence is 2.7 mm/a, locate in the urban district of Cangzhou.

Key words: high-rise building load, land subsidence, Biot's consolidation theory, groundwater seepage, three-dimentional full coupling math model, Cangzhou, Hebei Province

中图分类号: 

  • P642.26
[1] 严学新, 沈国平. 上海城区建筑密度与地面沉降关系分析[J]. 水文地质工程地质, 2002, 29(6): 21-25. Yan Xuexin, Shen Guoping. Relationship Between Building Density and Land Subsidence in Shanghai Urban Zone[J]. Hydrogeology and Engineering Geology, 2002, 29(6): 21-25.
[2] 唐益群, 宋寿鹏, 陈斌, 等.不同建筑容积率下密集建筑群区地面沉降规律研究[J].岩石力学与工程学报, 2010, 29(A01): 3425-3431. Tang Yiqun, Song Shoupeng, Chen Bin, et al. Study of Land Subsidence Rule of Dense Buildings Under Different Floor Area Ratios[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(A01):3425-3431.
[3] 龚士良. 上海城市建设对地面沉降的影响[J]. 中国地质灾害与防治学报, 1998, 9(2): 110-113. Gong Shiliang. Urban Construction's Impact on Land Subsidence in Shanghai[J]. The Chinese Journal of Geological Hazard and Control, 1998, 9(2): 110-113.
[4] 张桂平, 洪万才. 沧州市地面沉降初探[J]. 水资源保护, 2003(2): 54-55. Zhang Guiping, Hong Wancai. The Study of Land Subsidence in Cangzhou[J]. Water Resources Protection, 2003(2): 54-55.
[5] 钱家欢, 殷宗泽. 土工原理与计算[M]. 北京: 水利水电出版社, 1996. Qian Jiahuan, Yin Zongze. Principle and Calculation of Geotechnics[M]. Beijing: China Waterpower Press, 1996.
[6] Luo Zujiang, Zeng Feng. Finite Element Numerical Si-mulation of Land Subsidence and Groundwater Exploitation Based on Visco-Elastic-Plastic Biot's Consolidation Theory[J]. Journal of Hydrodynamics, 2011, 23(5): 615-624.
[7] 维亚诺夫C C. 土力学的流变学原理[M]. 杜余培译.北京: 科学出版社, 1987. Vianov C C. The Principle of Rheology in Soil Mec-Hanics[J]. Translated by Du Yupei. Beijing: Science Press, 1987.
[8] 陈晓平, 白世伟. 软黏土地基黏弹塑性比奥固结的数值分析[J]. 岩土工程学报, 2001, 23(4): 481-484. Chen Xiaoping, Bai Shiwei. The Numerical Analysis of Visco-Elastic-Plastic Biot's Consolidation for Soft Clay Foundation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 481-484.
[9] 年廷凯, 余鹏程, 柳楚楠, 等. 吹填粉砂土固结蠕变试验及模型[J]. 吉林大学学报(地球科学版), 2014,44(3):918-924. Nian Tingkai, Yu Pengcheng, Liu Chunan, et al.Consolidation Creep Test an Creep Model of Dredger Fill Silty Sand[J]. Journal of Jilin University (Earth Science Edition),2014,44(3):918-924.
[10] 姚仰平, 候伟. 土的基本力学特性及其弹塑性描述[J]. 岩土力学, 2009, 30(10): 2881-2902. Yao Yangping, Hou Wei. Basic Mechanical Behavior of Soils and Their Elasto-Plastic Modeling[J]. Rock and Soil Mechanics, 2009, 30(10): 2881-2902.
[11] 殷宗泽, 周建, 赵仲辉, 等. 非饱和土本构关系及变形计算[J]. 岩土工程学报, 2006, 28(2): 137-146. Yin Zongze, Zhou Jian,Zhao Zhonghui, et al. Constitutive Relations and Deformation Calculation for Uns-Aturated Soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 137-146.
[12] 缪林昌. 非饱和土的本构模型研究[J]. 岩土力学, 2007, 28(5): 855-860. Miao Linchang. Research of Constitutive Model of Unsaturated Soil[J]. Rock and Soil Mechanics, 2007,28(5): 855-860.
[13] 李医民, 周凤燕. 一类三维偏微分方程边值问题的解法[J]. 江苏大学学报(自然科学版), 2004, 25(4): 328-331. Li Yimin, Zhou Fengyan. Solution to a Class of Boundary Value Problem of Three Dimensional Partial Differential Equation[J]. Journal of Jiangsu University(Natural Science Journal of Earth Sciences and Environment Edition), 2004, 25(4): 328-331.
[14] 田杰, 刘先贵, 尚根华. 基于流固耦合理论的套损力学机理分析[J].水动力学研究与进展: A辑, 2005, 20(2): 221-225. Tian Jie, Liu Xiangui, Shang Genhua. Casing Damage Mechanism Based on Theory of Fluid-Solid Coupling Flow Through Underground Rock[J]. Journal of Hydrodynamics: A, 2005, 20(2): 221-225.
[15] 陈兴贤, 骆祖江, 安晓宇, 等. 深基坑降水三维变参数非稳定渗流与地面沉降耦合模型[J]. 吉林大学学报(地球科学版), 2013, 43(5):1572-1578. Chen Xingxian, Luo Zujiang, An Xiaoyu, et al.Coupling Model of Groundwater Three Dimensional Variable Parametric Non-Steady Seepage and Land-Subsidence[J]. Journal of Jilin University(Earth Science Edition),2013,43(5):1572-1578.
[16] 罗刚, 张建民. 邓肯-张模型和沈珠江双屈服面模型的改进[J]. 岩土力学, 2004, 25(6): 887-890. Luo Gang, Zhang Jianmin. Improvement of Duncan-Chang Nonlinear Model and Shen Zhujiang's Elastoplastic Model for Granular Soils[J]. Rock and Soil Mechanics, 2004, 25(6): 887-890.
[17] Smith I M, Griffiths D V. 有限元方法编程[M].第3版. 王菘, 周坚鑫, 王来, 等译. 北京:电子工业出版社, 2003. Smith I M,Griffiths D V. Programming the Finite Element Method[M].3rd ed. Translated by Wang Song, Zhou Jianxin, Wang Lai, et al. Beijing: Electronic Industry Press, 2003.
[18] 沧州市城乡规划局. 沧州市城市总体规划(2008-2020年)[R].沧州:沧州市城乡规划局, 2014. Urban and Rural Planning Bureau of Cangzhou City. Urban Master Planning of Cangzhou City (2008-2020)[R]. Cangzhou: Urban and Rural Planning Bureau of Cangzhou City, 2014.
[1] 王洁, 宫辉力, 陈蓓蓓, 高明亮, 周超凡, 梁悦, 陈文锋. 基于Morlet小波技术的北京平原地面沉降周期性分析[J]. 吉林大学学报(地球科学版), 2018, 48(3): 836-845.
[2] 周超凡, 宫辉力, 陈蓓蓓, 贾煦, 朱锋, 郭琳. 利用数据场模型评价北京地面沉降交通载荷程度[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1511-1520.
[3] 付延玲,金玮泽,陈兴贤,谈金忠. 高层建筑荷载引发地面沉降与隆起变形三维数值模拟[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1587-1594.
[4] 陈荣波,束龙仓,鲁程鹏,李伟. 含水层压密引起其特征参数变化的实验[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1958-1965.
[5] 李文运, 崔亚莉, 苏晨, 张伟, 邵景力. 天津市地下水流-地面沉降耦合模型[J]. J4, 2012, 42(3): 805-813.
[6] 付延玲. 基于地面沉降控制的区域性松散沉积层地下水可采资源规划评价[J]. J4, 2012, 42(2): 476-484.
[7] 骆祖江, 曾峰, 李颖. 地下水开采与地面沉降控制三维全耦合模型研究[J]. J4, 2009, 39(6): 1080-1088.
[8] 陶月赞,姚 梅. 地下水渗流力学的发展进程与动向[J]. J4, 2007, 37(2): 221-230.
[9] 于 军,苏小四,朱 琳,段福洲,高 立,吴曙亮. 苏锡常地区地面沉降地质结构三维可视化模型虚拟现实系统研究[J]. J4, 2007, 37(2): 393-399.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!