吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (6): 1874-1883.doi: 10.13278/j.cnki.jjuese.201606306

• 地球探测与信息技术 • 上一篇    下一篇

侧向测井电极系结构影响分析及阵列化测量新方法

高建申, 孙建孟, 姜艳娇, 崔利凯   

  1. 中国石油大学(华东)地球科学与技术学院, 山东 青岛 266580
  • 收稿日期:2016-02-07 出版日期:2016-11-26 发布日期:2016-11-26
  • 作者简介:高建申(1987-),博士研究生,主要从事电法测井方法与应用等方面的研究,E-mail:gjs1109@126.com
  • 基金资助:
    国家自然科学基金项目(41574122);国家科技重大专项(2011ZX05014-004-002H)

Effect of Electrode Array Structures in Laterolog and a New Array Measurement Method

Gao Jianshen, Sun Jianmeng, Jiang Yanjiao, Cui Likai   

  1. School of Geosicences, China University of Petroleum, Qingdao 266580, Shandong, China
  • Received:2016-02-07 Online:2016-11-26 Published:2016-11-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41574122) and National Science and Technology Major Project (2011ZX05014-004-002H)

摘要: 针对目前广泛使用的侧向测井电极系结构和聚焦方式,利用有限元数值模拟方法研究了三种常见的侧向测井电极系结构对电极系数、井眼影响系数、径向探测深度的影响;对比硬件聚焦中监督电极残余电位差对测井响应的影响,引入聚焦系数,提出了一种利用软件聚焦实现阵列化测量的新方法;利用Oklamoha标准地层模型验证了方法的正确性。结果表明,不同电极系结构和电极系的不同部分对测井响应的作用不同,其中电极系绝缘部分长度对探测特性的影响很大,在电极系设计过程中应重视绝缘尺寸对探测特性的影响。采用软件聚焦方式,不仅消除了硬件聚焦方式中残余电位差的影响,而且在不改变双侧向电极系结构的基础上,选择聚焦系数为0~1.1,得到了不同径向探测深度的测井曲线,实现了类似于阵列侧向测井中的阵列化测量。测量结果表明,电极系数随着聚焦系数的增大而减小,井眼影响系数保持在0.80~1.16,并提高了径向探测能力,最大探测深度达到2.0 m以上,获得更丰富的地层电阻率分布信息。

关键词: 侧向测井, 电极系结构, 软件聚焦, 聚焦系数, 有限元方法, 电阻率

Abstract: Based on the widely used electrode array structures and focusing ways in laterolog, effects of three conventional electrode array structures on electrode coefficient, borehole effect and radial investigation have been studied systematically using the finite element method. In addition, we have analyzed the effects of hardware focusing way and software focusing way on logging responses using the contrast of vision. An array measurement method using software focusing has been presented simultaneously, which had been tested using the Oklamoha standard formation. The results show that different electrode array structures and different parts have various effects on the detection characteristics. The status of insulator section should be attached great importance to, because their influence on detection characteristics is extraordinary obvious. The software way not only eliminates the negative influence of remainder potential difference in hardware focusing way, but also realizes array measurement similar to the array laterolog based on the importing of focusing coefficient with the range of 0-1.1, nevertheless, the electrode structure is consistent with the dual laterolog. The electrode coefficient decreases with the increase of focusing coefficient, borehole effect correction ranges from 0.8 to 1.16 and this method improves the radial investigation depth with the largest one exceeding 2.0 m, obtaining more abundant radial formation resistivity information.

Key words: laterolog, electrode array structure, software focusing, focusing coefficient, finite element method, resistivity

中图分类号: 

  • P631.8
[1] Suau J, Grimaldi P, Poupon A, et al. The Dual La-terolog: Rxo Tool[C]//Fall Meeting of the Society of Petroleum Engineers of AIME. San Antonio: Society of Petroleum Engineers Inc, 1972: 1-44.
[2] Davies D H,Faivre O, Gounot M T. Azimuthal Re-sistivity Imaging: A New-Generation Laterolog[J]. SPE Formation Evaluation, 1994, 9(3): 165-174.
[3] Smits J, Benimeli D, Dubourg I, et al. High Re-solution from a New Laterolog with Azimuthal Imaging[C]//Annual Technical Conference and Exhibition. Dallas: Society of Petroleum Engineers Inc, 1995: 563-576.
[4] Smits J, Dubourg I, Luling M G, et al. Improved Resistivity Interpretation Utilizing a New Array Laterolog Tool and Associated Inversion Processing[C]//Annual Technical Conference and Exhibition. New Orleans: Society of Petroleum Engineers Inc, 1998: 831-843.
[5] Itskovich G, Mezzatesta A, Strack K, et al. High-Definition Lateral Log-Resistivity Device: Basic Physics and Resolution[C]//SPWLA 39th Annual Logging Symposium. Keystone: Society of Petrophysicists & Well Log Analysts, 1998:1-12.
[6] Li S J, Martin L E S, Bittar S M, et al. Multi-Array Laterolog Tools and Methods with Differential Voltage Measurements: US Patent, 2013/0234718 A1[P]. 2013:9-12.
[7] 朱军, 冯琳伟, 李剑浩, 等. 一种新型的高分辨率双侧向测井方法[J]. 测井技术, 2007, 31(2):118-123. Zhu Jun, Feng Linwei, Li Jianhao, et al. A New High Resolution Dual Laterolog Logging Method[J]. Well Logging Technology, 2007,31(2):118-123.
[8] 童茂松, 宋建华. 0.2 m分辨率双侧向测井仪器数值模拟[J]. 地球物理学进展,2014, 29(5):2251-2257. Tong Maosong, Song Jianhua. Numeric Simulation of 0.2 m Vertical-Resolution Dual Laterolog Tool[J]. Progress in Geophysics, 2014, 29(5): 2251-2257.
[9] 贺飞, 马骁, 冯琳伟, 等. HAL6505阵列侧向测井仪[J]. 石油科技论坛, 2013, 32(2): 59-62. He Fei, Ma Xiao, Feng Linwei, et al. HAL6505 Array Laterolog Logging Tool[J]. Oil Forum, 2013, 32(2): 59-62.
[10] 朱军, 黄继贞, 汪功礼, 等. 贴井壁方位电阻率测井研究[C]//第十二届测井年会论文集. 北京:石油工业出版社,2001: 68-73. Zhu Jun, Huang Jizhen, Wang Gongli, et al. Sidewall Way Azimuthal Resistivity Logging[C]//The 12th Logging Symposium Proceedings. Beijing: Petroleum Industry Press, 2001: 68-73.
[11] Yin C F, Ke S Z, Xu Wei, et al. 3D Laterolog Array Sonde Design and Response Simulation[J]. Applied Geophysics, 2014,11(2): 223-234.
[12] 丁柱, 陈国华, 王艳梅, 等. 数值合成聚焦原理及算法实现[J]. 国外测井技术, 2001, 16(2): 8-9. Ding Zhu, Chen Guohua, Wang Yanmei, et al. Numerical Synthesis Focusing Principle and Algorithm Implementation[J]. Foreign Well Logging Technology, 2001, 16(2): 8-9.
[13] 胡海涛, 白庆杰, 肖占山, 等. 基于合成聚焦的高分辨率侧向测井仪数值模拟研究[J].地球物理学进展, 2014, 29(5): 2178-2182. Hu Haitao, Bai Qingjie, Xiao Zhanshan, et al. Numerical Simulation of High Resolution Laterolog Tool Based on Computed Focusing[J]. Progress in Geophysics, 2014, 29(5): 2178-2182.
[14] 祝鹏, 林承焰, 李智强, 等. 水平井和大斜度井中阵列侧向测井响应数值模拟[J].吉林大学学报(地球科学版), 2015, 45(6): 1862-1869. Zhu Peng, Lin Chengyan, Li Zhiqiang, et al. Numerical Simulation of Array Laterolog Response in Horizontal and Highly Deviated Wells[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(6): 1862-1869.
[15] 李大潜,郑宋穆,谭永基,等. 有限元素在电法测井中的应用[M].北京: 石油工业出版社, 1980. Li Daqian, Zheng Songmu, Tan Yongji, et al. The Application of Finite-Element Method in Electric Well Logging[M]. Beijing: Petroleum Industry Press, 1980.
[16] 张庚骥. 电法测井[M]. 北京:石油工业出版社, 1992. Zhang Gengji. Electrical Logging[M]. Beijing: Petroleum Industry Press, 1992.
[17] 梁晓成, 宋建华, 苑娜. 软件聚焦在双侧向测井仪器中的应用[J]. 电子世界, 2013(17):116. Liang Xiaocheng, Song Jianhua, Yuan Na. Application of Software Focusing in Dual Laterolog Instrument[J]. Electronics World, 2013(17): 116.
[18] Gao G Z. Simulation of Borehole Electromagnetic Measurements in Dipping and Anisotropic Rock Formations and Inversion of Array Induction Data[D]. Austin: the University of Texas at Austin, 2005.
[1] 宁亚灵, 许家姝, 解滔, 张国苓, 卢军. 大柏舍深井地电阻率观测布极方式分析[J]. 吉林大学学报(地球科学版), 2018, 48(2): 525-533.
[2] 姜艳娇, 孙建孟, 高建申, 邵维志, 迟秀荣, 柴细元. 低孔渗储层井周油藏侵入模拟及阵列感应电阻率校正方法[J]. 吉林大学学报(地球科学版), 2017, 47(1): 265-278.
[3] 李世文, 殷长春, 翁爱华. 时间域航空电磁电阻率和磁导率全时反演[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1830-1836.
[4] 严家斌, 皇祥宇. 大地电磁三维矢量有限元正演[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1538-1549.
[5] 孟庆生, 韩凯, 刘涛, 高镇. 软土基坑隔水帷幕渗漏检测技术[J]. 吉林大学学报(地球科学版), 2016, 46(1): 295-302.
[6] 张中庆, 庞兵强. 随钻电磁波测井数据处理新方法[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1720-1726.
[7] 周洪福,王春山,聂德新. 断层带岩体变形模量对坝基稳定性影响[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1254-1259.
[8] 杨海燕,邓居智,汤洪志,林云. 全空间瞬变电磁法资料解释方法中的平移算法[J]. 吉林大学学报(地球科学版), 2014, 44(3): 1012-1017.
[9] 杨震,杨锦舟,韩来聚. 随钻方位电磁波电阻率成像模拟及应用[J]. 吉林大学学报(地球科学版), 2013, 43(6): 2035-2043.
[10] 汪宏年, 商庆龙, 朱天竹, 李舟波. 用多分量感应资料快速重建层状地层的纵横向电阻率和水平界面深度[J]. J4, 2012, 42(4): 900-905.
[11] 李晓辉, 周彦球, 缑艳红, 王玉华, 姜宝彦. 电成像测井孔隙度分析技术及其在碳酸盐岩储层产能预测中的应用[J]. J4, 2012, 42(4): 928-934.
[12] 谭锋奇, 李洪奇, 孙中春, 欧阳敏, 韩述一. 构造电阻率差比值法识别火山岩裂缝地层天然气层[J]. J4, 2012, 42(4): 1199-1206.
[13] 刘斌, 李术才, 李树忱, 聂利超, 钟世航, 宋杰, 刘征宇. 隧道含水构造电阻率法超前探测正演模拟与应用[J]. J4, 2012, 42(1): 246-253.
[14] 李勇| 林品荣, 李桐林, 王有学, 尚晓. 基于异常复电位2.5维CR有限元数值模拟[J]. J4, 2011, 41(5): 1596-1604.
[15] 王新民, 崔学慧, 陆祥安. 求解非稳定对流占优水质模型的非标准Galerkin有限元法[J]. J4, 2011, 41(3): 812-818.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!