吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (1): 265-278.doi: 10.13278/j.cnki.jjuese.201701306

• 地球探测与信息技术 • 上一篇    下一篇

低孔渗储层井周油藏侵入模拟及阵列感应电阻率校正方法

姜艳娇1, 孙建孟1, 高建申1, 邵维志2, 迟秀荣2, 柴细元2   

  1. 1. 中国石油大学(华东)地球科学与技术学院, 山东 青岛 266580;
    2. 中国石油渤海钻探工程有限公司测井分公司, 天津 300280
  • 收稿日期:2016-09-15 出版日期:2017-01-26 发布日期:2017-01-26
  • 作者简介:姜艳娇(1986),女,博士研究生,主要从事测井资料解释与方法等方面的研究工作,E-mail:jyjiao0224@163.com
  • 基金资助:
    国家自然科学基金项目(41574122,41374124)

Numerical Simulation of Mud Invasion Around the Borehole in Low Permeability Reservoir and a Method for Array Induction Log Resistivity Correction

JiangYanjiao1, Sun Jianmeng1, Gao Jianshen1, Shao Weizhi2, Chi Xiurong2, Chai Xiyuan2   

  1. 1. School of Geosciences, China University of Petroleum, Qingdao 266580, Shandong, China;
    2. Logging Branch of CNPC Bohai Drilling Engineering CO. LTD., Tianjin 300280, China
  • Received:2016-09-15 Online:2017-01-26 Published:2017-01-26
  • Supported by:
    Supported byNational Natural Science Foundation of China (41574122, 41374124)

摘要: 泥浆滤液侵入渗透性地层会改变井周地层流体的原始分布状态,使井周地层电阻率发生变化、储集层电测井响应失真。本文基于油水两相渗流理论和水对流扩散理论,应用数值模拟方法构建地层模型,研究低渗储层泥浆侵入过程中井周地层矿化度、含水饱和度、电阻率变化特征及井周油藏分布特征。对不同渗透率地层泥浆侵入的数值模拟结果表明:在低渗透储层,相同侵入时间内,随着地层渗透率的增加,泥浆侵入深度增加,且同一侵入深度的含油饱和度减小;随着侵入时间的增加,井周地层水矿化度、含水饱和度和地层电阻率的侵入剖面前缘均发生明显的变化。结合3口井的泥浆侵入数值模拟分析,发现阵列感应测井响应特征及其电阻率的幅度差异受泥浆侵入时间和侵入深度影响。不同流体性质层段的井周油藏动态演化规律模拟结果表明,井周油藏的变化情况与储层流体性质有明显关系。利用实例井侵入模拟结果与阵列感应测井响应的相关性,构建了侵入深度的计算公式;根据侵入阶跃剖面,利用几何因子理论构建了原始地层电阻率计算公式,用以辅助储层电阻率校正。正确认识井周地层泥浆侵入特征及井周油藏的分布情况有助于提高阵列感应测井评价储层的准确性。

关键词: 低渗透储层, 泥浆侵入, 数值模拟, 阵列感应, 测井响应, 电阻率校正

Abstract: The original distribution state of formation fluid and the formation resistivity around the borehole will be changed while mud filtrate invades the permeable formations. Based on both of the water-oil phase flow theory and convective diffusion theory, numerical simulation method is applied to build the formation model for the study of the mud invasion characteristics in low permeable reservoir, for studying the distribution characteristics of salinity, water saturation, resistivity and oil/gas reservoir around the borehole during mud invasion. The numerical simulation results of mud invasion in different permeable formation show that mud invasion depth increases as permeability increases in the same invasion time in low permeable reservoir, and the invasion profile of salinity, water saturation, resistivity and remaining oil change obviously as invasion time increases. The numerical simulation analysis of three practical boreholes shows that the array induction logging response characteristics and their resistivity amplitude difference are influenced by mud invasion depth and invasion time. According to the dynamic evolution simulation of different reservoir fluid types around borehole, the distribution of reservoir has obvious relationship with fluid type. The invasion depth calculation formula is obtained based on the results of the case study borehole and the array induction log response, and also the original formation resistivity calculation formula is constructed based on geometrical factor theory according to the invasive step profile for assistant reservoir resistivity correction. Correct understanding the characteristics of mud invasion and the distribution of reservoir around the borehole can improve the accuracy in array induction logging reservoir evaluation.

Key words: low permeable reservoir, mud invasion, numerical simulation, array induction, logging response, resistivity correction

中图分类号: 

  • P631.8
[1] 张松扬, 陈玉魁. 钻井液侵入机理特征及影响因素研究[J]. 勘探地球物理进展,2002,25(6):28-31. Zhang Songyang, Chen Yukui. Reponses to Drilling-Fluid[J]. Progress in Exploration Geophysics, 2002, 25(6):28-31.
[2] 黄龙, 鲍志东, 张文瑞, 等. 淡水泥浆侵入引起的低阻油气层实例分析[J]. 西南石油大学学报(自然科学版), 2008, 30(2):14-18. Huang Long, Bao Zhidong, Zhang Wenrui, et al. Case Study on Low Resistivity Oil &Gas Zone Caused by Fresh Water Mud Invasion[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2008, 30(2):14-18.
[3] 刘尊年, 孙建孟, 迟秀荣, 等. 泥浆侵入研究现状分析[J]. 地球物理学进展, 2012, 27(6):2594-2599. Liu Zunnian, Sun Jianmeng, Chi Xiurong, et al. Analysis of Research Present Situation of Mud Invasion[J]. Progress in Geophysics, 2012, 27(6):2594-2599.
[4] 陈福煊, 孙嘉戌. 泥浆滤液侵入孔隙地层径向导电特性的模拟实验[J]. 地球物理学报, 1996, 39(增刊1):371-378. Chen Fuxuan, Sun Jiaxu. Simulation Test of Radial Electric Conductivity During the Mud Filtrate Invading Porous Formation[J]. Chinese Journal of Geophysics, 1996, 39(Sup.1):371-378.
[5] 张建华, 胡启, 刘振华. 钻井泥浆滤液侵入储集层的理论计算模型[J]. 石油学报, 1994, 15(4):73-78. Zhang Jianhua, Hu Qi, Liu Zhenhua. A Theoretical Model for Mud-Filtrate Invasion in Reservoir Formations During Drilling[J]. Acta Petrolei Sinica, 1994, 15(4):73-78.
[6] Mark A P, Wilson C C, Mohan M, et al. Multiple Factors that Influence Wireline Formation Tester Pressure Measurements and Fluid Contacts Estimates[C]//SPE Annual Technical Conference and Exhibition. New Orleans:Society of Petroleum Engineers, 2001:1-16.
[7] Won S, Bilgesu H I, Ameri S. Investigation of Mud-Filtrate Using Computational Fluid Dynamics[C]//SPE Eastern Regional/AAPG Eastern Section Joint Meeting. Pittsburgh:Society of Petroleum Engineers, 2008:1-9.
[8] 徐文远. 泥浆侵入数值模拟及校正方法研究[D]. 武汉:长江大学, 2012. Xu Wenyuan. A Study Based on Numerical Simulation for Resistivity Correction in Mud-Invasion Reservoir[D]. Wuhan:Yangtze University,2012.
[9] Mayank M, Carlos T V, Jesús M S, et al. Influence of Petrophysical and Fluid Properties on Apply-Induction Measurements Acquired in the Presence of Oil-Base Mud-Filtrate Invasion[C]//SPWLA 48th Annual Logging Symposium.[S. l.]:Society of Petrophysicists and Well-Log Analysts, 2007:1-16.
[10] 常文会, 潘和平, 周峰. 泥浆侵入二维数值模拟[J].地球科学:中国地质大学学报,2010,35(4):674-680. Chang Wenhui, Pan Heping, Zhou Feng. Two-Dimensional Numerical Simulation of Mud Invasion[J].Earth Science:Journal of China University of Geosciences,2010,35(4):674-680.
[11] Wu J, Carlos T V, Kamy S, et al. Numerical Simu-lation of Mud-Filtrate Invasion in Deviated Wells[J]. SPE Reservoir Evaluation & Engineering, 2004, 7(2):143-154.
[12] 杨震, 李志强, 邓少贵, 等. 大斜度井钻井液侵入数值模拟[J]. 中国石油大学学报(自然科学版), 2008, 32(3):55-59. Yang Zhen, Li Zhiqiang, Deng Shaogui, et al. Numerical Simulation of Drilling Fluid Invasion in Highly Deviated Wells[J]. Joumal of China University of Petroleum (Edition of Natural Sciences), 2008, 32(3):55-59.
[13] 邓少贵, 李志强, 范宜仁, 等. 斜井泥浆侵入仿真及其阵列侧向测井响应数值模拟[J]. 地球物理学报, 2010, 53(4):994-1000. Deng Shaogui, Li Zhiqiang, Fan Yiren, et al. Numerical Simulation of Mud Invasion and Array Laterolog Response in Deviaed Wells[J]. Chinese Journal of Geophysics, 2010, 53(4):994-1000.
[14] Dewan J T, Martin E. Mudcake Buildup and Invasion in Low Permeability Formations:Application to Permeability Determination by Measurement While Drilling[C]//SPWLA 34th Annual Logging Symposium. Calgary:Society of Petrophysicists and Well-Log Analysts, 1993:1-24.
[15] 范宜仁, 胡云云, 李虎, 等.泥饼动态生长于泥浆侵入数值模拟[J]. 测井技术, 2013, 37(5):466-471. Fan Yiren, Hu Yunyun, Li Hu, et al. Numerical Simulation of Mud-Cake Dynamic Formation and Reservoir Mud Filtrate Invasion[J]. Well Logging Technology, 2013, 37(5):466-471.
[16] Ling K, Shen Z, He J, et al. A Comprehensive App-roach to Estimate Invasion Radius of Mud Filtrate to Evaluate Formation Damage Caused by Overbalanced Drilling[C]//SPE International Symposium and Exhibition on Formation Damage Control. Lafayette:Society of Petroleum Engineers, 2014:1-18.
[17] Tobola D P, Holditch S A. Determination of Reser-voir Permeability from Repeated Induction Logging[J]. SPE Formation Evaluation, 1991, 6(1):20-26.
[18] 邓少贵, 范宜仁, 谢关宝, 等. 泥浆侵入地层双感应测井曲线正负差异特性分析[J]. 测井技术, 2004, 28(6):496-498. Deng Shaogui,Fan Yiren, Xie Guanbao, et al. The Influential Factors on Electrolog Response of Formation with Mud Filtration Invasion[J]. Well Logging Technology, 2004, 28(6):496-498.
[19] 范文同, 章成广, 周红涛, 等. 塔河油田电阻率泥浆侵入影响分析与校正[J]. 石油天然气学报, 2009, 31(4):86-90. Fan Wentong, Zhang Chengguang, Zhou Hongtao, et al. The Analysis and Correction for Effect of Mud Invasion on Resistivity in Tahe Oilfield[J]. Journal of Oil and Gas Technology, 2009, 31(4):86-90.
[20] 任好, 章成广, 刘晓梅. 泥浆侵入对阵列感应电阻率测井影响的数值模拟与校正[J]. 石油天然气学报(江汉石油学院学报), 2006, 28(3):82-84. Ren Hao, Zhang Chengguang, Liu Xiaomei. Numerical Simulation and Correction of Influence of Array Induction Resistivity Logging in Mud Invaded Reservoirs[J]. Journal of Oil and Gas Technology (Journal of Jianghan Petroleum Institute), 2006, 28(3):82-84.
[21] 韩大匡. 油藏数值模拟基础[M]. 北京:石油工业出版社, 1993:1-325. Han Dakuang. Reservoir Numerical Simulation[M]. Beijing:Publishing House of Oil Industry, 1993:1-325.
[22] Zhang J, Hu Q, Liu Z. Estimation of True Forma-tion Resistivity and Water Saturation with a Time-Lapse Induction Logging Method[J]. The Log Analyst, 1999, 40(2):138-148.
[23] 张剑波,李谢清,石阳,等. 油藏数值模拟中地质模型的建模流程与方法[J]. 吉林大学学报(地球科学版), 2015, 45(3):860-868. Zhang Jianbo,Li Xieqing, Shi Yang, et al. Processes and Technology of Three-Dimensional Geological Modeling System in Numerical Reservoir Simulation[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(3):860-868.
[24] 张建华, 欧阳健. 泥浆侵入储层电阻率测井动态反演多解性研究[J]. 测井技术, 2000, 24(2):102-107. Zhang Jianhua, Ouyang Jian. Study of Multi-Solution Characters for Inversion of Dynamic Resistivity Logging Responses to Oil/Gas Formation Invaded by Mud-Filtrate[J]. Well Logging Technology, 2000, 24(2):102-107.
[25] 朱留芳, 沈建国. 测井曲线几何因子理论[J]. 测井技术, 2013, 37(6):624-628. Zhu Liufang, Shen Jianguo. The Geometric Factor Theory for Logging Curves[J]. Well Logging Technology, 2013, 37(6):624-628.
[1] 张波, 曹洪恺, 孙建孟, 张鹏云, 闫伟超. 稠油热采地层阵列感应测井响应特性数值模拟[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1277-1286.
[2] 殷长春, 杨志龙, 刘云鹤, 张博, 齐彦福, 曹晓月, 邱长凯, 蔡晶. 基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 872-880.
[3] 刘宗利, 王祝文, 刘菁华, 赵淑琴, 欧伟明. 辽河东部凹陷火山岩相测井响应特征及储集意义[J]. 吉林大学学报(地球科学版), 2018, 48(1): 285-297.
[4] 阮大为, 李顺达, 毕亚强, 刘兴宇, 陈旭虎, 王兴源, 王可勇. 内蒙古阿尔哈达铅锌矿床构造控矿规律及深部成矿预测[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1705-1716.
[5] 谭家华, 雷宏武. 基于GMS的三维TOUGH2模型及模拟[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1229-1235.
[6] 尹崧宇, 赵大军, 周宇, 赵博. 超声波振动下非均匀岩石损伤过程数值模拟与试验[J]. 吉林大学学报(地球科学版), 2017, 47(2): 526-533.
[7] 贾珍臻, 林承焰, 任丽华, 董春梅, 宫宝. 苏德尔特油田低渗透凝灰质砂岩成岩作用及储层质量差异性演化[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1624-1636.
[8] 朱传华, 王伟锋, 王青振, 李玉坤. 非均质储层三维构造应力场模拟方法[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1580-1588.
[9] 孙建国. 高频渐近散射理论及其在地球物理场数值模拟与反演成像中的应用——研究历史与研究现状概述以及若干新进展[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1231-1259.
[10] 王常明, 常高奇, 吴谦, 李文涛. 静压管桩桩-土作用机制及其竖向承载力确定方法[J]. 吉林大学学报(地球科学版), 2016, 46(3): 805-813.
[11] 钱文见, 尚岳全, 杜丽丽, 朱森俊. 充气位置及压力对边坡截排水效果的影响[J]. 吉林大学学报(地球科学版), 2016, 46(2): 536-542.
[12] 喻鹏, 马腾, 唐仲华, 周炜. 盆地异常低压系统处置油田污水可行性[J]. 吉林大学学报(地球科学版), 2016, 46(1): 211-219.
[13] 祝鹏, 林承焰, 李智强, 赵文积, 张华莲. 水平井和大斜度井中阵列侧向测井响应数值模拟[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1862-1869.
[14] 那金, 许天福, 魏铭聪, 冯波, 鲍新华, 姜雪. 增强地热系统热储层-盐水-CO2相互作用[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1493-1501.
[15] 李正伟, 张延军, 郭亮亮, 金显鹏. 松辽盆地北部干热岩开发水热产出预测[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1189-1197.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!