吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (2): 573-579.doi: 10.13278/j.cnki.jjuese.201702206

• 地质工程与环境工程 • 上一篇    下一篇

酪氨酸酶固定化碳材料对苯酚的生物降解性能

刘娜1, 梁刚1, 董新维1, 祁小丽1, 杨悦锁1,2, 叶康1, 朴云仙1   

  1. 1. 地下水资源与环境教育部重点实验室/吉林大学环境与资源学院, 长春 130021;
    2. 沈阳大学区域污染环境生态修复教育部重点实验室, 沈阳 110044
  • 收稿日期:2016-06-30 出版日期:2017-03-26 发布日期:2017-03-26
  • 通讯作者: 朴云仙(1979-),女,副教授,主要从事纳米生物催化环境修复、环境监测、生物传感器方面的研究,E-mail:yxpiao@jlu.edu.cn E-mail:yxpiao@jlu.edu.cn
  • 作者简介:刘娜(1977-),女,教授,博士生导师,主要从事环境生物技术方面的研究,E-mail:liuna@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41472237);吉林省科技厅自然科学基金项目(20150101094JC)

Biodegradation Property of Phenol Using the Immobilized Tyrosinase on Carbon Material

Liu Na1, Liang Gang1, Dong Xinwei1, Qi Xiaoli1, Yang Yuesuo1,2, Ye Kang1, Piao Yunxian1   

  1. 1. Key Laboratory of Groundwater Resources and Environment of the Ministry of Education/College of Environment and Resources, Jilin University, Changchun 130021, China;
    2. Key Lab of Eco-Restoration of Regional Contaminated Environment, Shenyang University, Ministry of Education, Shenyang 110044, China
  • Received:2016-06-30 Online:2017-03-26 Published:2017-03-26
  • Supported by:
    Supported by the National Natural Science Foundation of China (41472237) and the Natural Science Foundation from the Department of Science & Technology of Jilin Province (20150101094JC)

摘要: 以新型碳材料氧化石墨烯作为载体,利用共价结合方法制备酪氨酸酶固定化氧化石墨烯复合物,并利用该复合物对苯酚进行催化降解,探讨酶的加载特性和酶的催化活性,以及固定化酪氨酸酶催化降解苯酚的最优条件及储存稳定性。通过对固定化酪氨酸酶进行活性和固定量分析后认为:单位质量载体的酶固定量为1.78 mg/mg,单位质量载体的酶活性为1 880.6 U/mg;固定化酪氨酸酶在30 h内对47.06 mg/L苯酚的降解率可达86.3%,降解反应的最优条件为pH=7.0、温度=25℃;固定化酪氨酸酶在4℃条件下30 d后仍保持初始活性的77.7%,其稳定性优于游离酪氨酸酶。另外,在氧化石墨烯上引入磁颗粒,既简化了酶固定流程,又能做到回收利用。

关键词: 氧化石墨烯, 酪氨酸酶, 苯酚, 生物降解, 固定化

Abstract: Graphene oxide, a novel carbon material, was employed as the supporting material for the immobilization of tyrosinase enzymes with covalent bonding method. Loading dosage, enzyme activity, optimal conditions for phenol degradation and storage stability of the immobilized tyrosinase were investigated. Loading yield and enzyme activity of immobilized tyrosinase could reach 1.78 mg/mg support and 1 880.6 U/mg support, respectively. The phenol degradation efficiency by immobilized tyrosinase was 86.3% in 30 h reaction and the optimal conditions of phenol degradation were at pH 7.0 and 25℃. Comparing with the free tyrosinase, the immobilized tyrosinase had better storage stability by retaining 77.7% of initial activity for at least 30 days when stored at 4℃. With the introduced magnetic particles in the surface of graphene oxide, the process of enzyme immobilization could be simplified and it is helpful for reuse.

Key words: graphene oxide, tyrosinase, phenol, biodegradation, immobilization

中图分类号: 

  • X506
[1] Huang Q, Tang J, Weber Jr W J. Precipitation of Enzyme-Catalyzed Phenol Oxidative Coupling Products:Background Ion and pH Effects[J]. Water Research, 2005, 39(13):3021-3027.
[2] Dotto G L, Costa J A V, Pinto L A A. Kinetic Studies on the Biosorption of Phenol by Nanoparticles from Spirulina sp LEB 18[J]. Journal of Environmental Chemical Engineering, 2013, 1(4):1137-1143.
[3] 康春莉, 冯淑霞, 郭平, 等. 模拟太阳光条件下草酸钠-Fenton试剂降解苯酚[J]. 吉林大学学报(理学版), 2006, 44(4):658-662. Kang Chunli, Feng Shuxia, Guo Ping, et al. Degradation of Phenol by Sodium Oxalate-Fenton Reagent Under Simulated Sunlight[J]. Journal of Jilin University (Science Edition), 2006, 44(4):658-662.
[4] 邹东雷, 李婷婷, 高梦薇, 等. 基于响应面的可见光催化材料制备与优化[J]. 吉林大学学报(地球科学版), 2015, 45(6):1833-1838. Zou Donglei, Li Tingting, Gao Mengwei, et al. Preparation and Optimization of the Photocatalytic Materials Under Visible Light with Response Surface Methodology[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(6):1833-1838.
[5] Xu D, Yang Z. Cross-Linked Tyrosinase Aggregates for Elimination of Phenolic Compounds from Wastewater[J]. Chemosphere, 2013, 92(4):391-398.
[6] Ba S, Haroune L, Cruz-Morato C, et al. Synthesis and Characterization of Combined Cross-Linked Laccase and Tyrosinase Aggregates Transforming Acetaminophen as a Model Phenolic Compound in Wastewaters[J]. Science of the Total Environment, 2014, 487(14):748-755.
[7] Ikehata K, Nicell J A. Characterization of Tyrosinase for the Treatment of Aqueous Phenols[J]. Bioresource Technology, 2000, 74(3):191-199.
[8] Aytar B S, Bakir U. Preparation of Cross-Linked Tyro-sinase Aggregate[J]. Process Biochemistry, 2008, 43(2):125-131.
[9] Seetharam G B, Saville B A. Degradation of Phenol Using Tyrosinase Immobilized on Siliceous Supports[J]. Water Research, 2003, 37(2):436-440.
[10] Zhu J, Sun G. Lipase Immobilization on Glutaral-dehyde-Activated Nanofibrous Membranes for Improved Enzyme Stabilities and Activities[J]. Reactive and Functional Polymers, 2012, 72(11):839-845.
[11] Dincer A, Becerik S, Aydemir T L. Immobilization of Tyrosinase on Chitosan-Caly Composite Beads[J]. International Journal of Biological Macromolecules, 2012, 50(3):815-820.
[12] Bayramoglu G, Akbulut A, Arica M Y. Immobiliza-tion of Tyrosinase on Modified Diatom Biosilica:Enzymatic Removal of Phenolic Compounds from Aqueous Solution[J]. Journal of Hazardous Materials, 2013, 244/245(2):528-536.
[13] 杨雪梅,张兰英,张蕾,等. 固定化酶在高浓度有机废水处理中的应用[J].吉林大学学报(地球科学版), 2005, 35(3):398-402. Yang Xuemei, Zhang Lanying, Zhang Lei, et al. Application of Immobilized Proteases in Treating Water with High Concentration Organic Substances[J]. Journal of Jilin University (Earth Science Edition), 2005, 35(3):398-402.
[14] 张林,赵宏伟,杨倚寒,等. 单层石墨烯薄膜材料纳米压痕过程的分子动力学解析[J]. 吉林大学学报(工学版),2013, 43(6):1558-1565. Zhang Lin, Zhao Hongwei, Yang Yihan, et al. Molecular Dynamics Simulation of Nanoindentation of Single-Layer Graphene Sheet[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(6):1558-1565.
[15] Hermanova S, Zarevucka M, Bousa D, et al. Gra-phene Oxide Immobilized Enzymes Show High Thermal and Solvent Stability[J]. Nanoscale, 2015, 7(13):5852-5858.
[16] Zhang F, Zheng B, Zhang J, et al. Horseradish Pe-roxidase Immobilized on Graphene Oxide:Physical Properties and Applications in Phenolic Compound Removal[J]. The Journal of Physical Chemistry C, 2010, 114(18):8469-8473.
[17] Zhou Liya, Jiang Yanjun, Gao Jing, et al. Graphene Oxide as a Matrix for the Immobilization of Glucose Oxidase[J]. Applied Biochemistry and Biotechnology, 2012, 168(6):1635-1642.
[18] Kampmann M, Boll S, Kossuch J, et al. Efficient Im-mobilization of Mushroom Tyrosinase Utilizing Whole Cells from Agaricus Bisporus and Its Application for Degradation of Bisphenol A[J]. Water Research, 2014, 57(5):295-303.
[19] Ispas C R, Ravalli M T, Steere A, et al. Multifunc-tional Biomagnetic Capsules for Easy Removal of Phenol and Bisphenol A[J]. Water Research, 2010, 44(6):1961-1969.
[20] Xu D, Yang Y, Yang Z. Activity and Stability of Cross-Linked Tyrosinase Aggregates in Aqueous and Nonaqueous Media[J]. Journal of Biotechnology, 2011, 152(1/2):30-36.
[1] 邹东雷, 李婷婷, 高梦薇, 钱宁, 张高瑞洋, 董双石. 基于响应面的可见光催化材料制备与优化[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1833-1838.
[2] 杨悦锁, 雷玉德, 杜新强, 韩建超, 曹玉清. 当地下水邂逅DNA:石油类有机污染及其生物降解[J]. J4, 2012, 42(5): 1434-1445.
[3] 苏小四, 吕航, 张文静, 张玉玲, 焦珣. 某石油污染场地地下水石油烃生物降解的13C、34S同位素证据[J]. J4, 2011, 41(3): 847-854.
[4] 夏雨波, 杨悦锁, 杜新强, 杨明星. 石油污染场地浅层地下水MNA原位修复潜能及微生物降解效益评估[J]. J4, 2011, 41(3): 831-839.
[5] 张兰英, 张蕾, 岳建伟, 刘娜, 孙恒战. 吗啉废水的生化处理工艺[J]. J4, 2011, 41(2): 536-540.
[6] 毕海涛, 张兰英, 刘娜, 杨国军, 徐国欣, 朱博麟. 无机材料对PVA-H3BO3包埋固定化方法的改进[J]. J4, 2011, 41(1): 241-246.
[7] 王晓丽, 李鱼, 王一喆, 杜显元, 王婷, 刘建林. 粘土矿物的掺杂对沉积物吸持Cu、Zn能力的影响[J]. J4, 2010, 40(1): 183-187.
[8] 任何军, 刘娜,高松,张兰英,张玉玲,周睿. 假单胞菌DN2对多氯联苯的降解及bphA1核心序列测定[J]. J4, 2009, 39(2): 312-0316.
[9] 刘虹,张兰英,刘娜,刘鹏. 低温下固定化微生物降解水体中阿特拉津的效果[J]. J4, 2008, 38(6): 1027-1031.
[10] 董 军,张 晶,赵勇胜,张伟红,吕爱民,韩 融,刘莹莹,李志斌. 渗滤液污染物在地下环境中的生物地球化学作用[J]. J4, 2007, 37(3): 587-0591.
[11] 郭 平,高红杰,王 瑾,康春莉. 不同环境条件对固定化细菌吸附低浓度Cd2+规律的影响[J]. J4, 2007, 37(2): 375-379.
[12] 赵 吉吉,张兰英,周佳欣. 降解多氯联苯嗜盐菌的分离和降解特性[J]. J4, 2007, 37(2): 380-383.
[13] 邹东雷,袁静敏,赵晓波,原文双,杨忠平. 固定化生物技术在合成染料废水处理中的应用[J]. J4, 2006, 36(04): 613-615.
[14] 樊冬玲,赵勇胜,董 军. 胶粒吸附苯酚实验研究[J]. J4, 2006, 36(04): 673-676.
[15] 杨雪梅,张兰英,张蕾,于宏兵,张玉玲. 固定化酶在高浓度有机废水处理中的应用[J]. J4, 2005, 35(03): 398-0402.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!