吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (3): 785-792.doi: 10.13278/j.cnki.jjuese.201703112

• 地质与资源 • 上一篇    下一篇

通过碎屑低温年龄恢复西南天山古高度

丁汝鑫1,2, 梁世友3, 何将启4   

  1. 1. 中山大学地球科学与工程学院, 广州 510275;
    2. 广东省地质过程与矿产资源探查重点实验室, 广州 510275;
    3. 中国石化石油勘探开发研究院无锡石油地质研究所, 江苏 无锡 214126;
    4. 中海石油(中国)有限公司勘探部, 北京 100010
  • 收稿日期:2016-12-07 出版日期:2017-05-26 发布日期:2017-05-26
  • 作者简介:丁汝鑫(1978-),男,讲师,主要从事构造地质学方面的研究,E-mail:dingrux@mail.sysu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41102131);广东省自然科学基金项目(2015A030313193)

Paleoelevation Reconstruction of Southwestern Tianshan Using Detrital Low-Temperature Thermochronology

Ding Ruxin1,2, Liang Shiyou3, He Jiangqi4   

  1. 1. School of Earth Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China;
    2. Guangdong Provincial Key Laboratory of Mineral Resources & Geological Processes, Guangzhou 510275, China;
    3. Wuxi Research Institute of Petroleum Geology, SINOPEC, Wuxi 214126, Jiangsu,China;
    4. Exploration Department, CNOOC Limited, Beijing 100010, China
  • Received:2016-12-07 Online:2017-05-26 Published:2017-05-26
  • Supported by:
    Supported by the National Natural Science of China (41102131) and Natural Science Foundation of Guangdong Province (2015A030313193)

摘要: 目前使用低温年代学来恢复造山带古地形,主要是采用在造山带内部采样来做原地高度的恢复。本文提出用碎屑颗粒低温年代学来恢复造山带平均古高度变化率的方法,即通过山间盆地或山前堆积碎屑物大量的单颗粒年龄,获取蚀源区大面积的、区域性的平均剥露速率,进而通过均衡校正计算出蚀源区的平均古高度变化率,为造山带古地形恢复提供了新的途径。本文以西南天山为例进行尝试,通过已发表的339个碎屑颗粒裂变径迹年龄,获得西南天山的6~8 Ma(年龄峰期)的剥露速率为0.74~0.60 km/Ma,平均古高度变化率为0.15~0.23 km/Ma、0.12~0.19 km/Ma(降低率)。显示西南天山在6~8 Ma以来发生了比较快速的剥露,如果不考虑构造抬升等因素,平均古高度也发生了比较快速的降低,如果按8 Ma以来计算,则正好降低了1 000~1 500 m。

关键词: 碎屑颗粒, 裂变径迹, 剥露速率, 西南天山

Abstract: At present, paleoelevation reconstructiion of the orogenic belt is mainly based on low-temperature thermochronology of samples collected within the orogenic belt. In this paper, a method is proposed to recover the average height change rate of the orogenic belt by using the low-temperature chronology of the detrital grains, which provides a new way for the restoration of orogenic paleo-terrain. It means that the large-scale and regional average exhumation rate can be calculated through the detrital single grain ages located in intramontane basin or piedmont, and then the average ancient height change rate of the erosion area can be calculated by the isostatic correction. In this paper, the calculation results are, by using the published 339 detrital grain ages of fission track, that the exhumation rate of 6-8 Ma (age peak) of southwestern Tianshan was 0.74-0.60 km/Ma, and the average ancient height change rate was 0.15 to 0.23 km/Ma and 0.12 to 0.19 km/Ma (decreasing rate). This conclusion indicates that the southwestern Tianshan has experienced a rapid exhumation since 6-8 Ma ago, in the case of without considering the structural uplift and other factors, and the average paleo-height has decreased rapidly 1 000-1 500 m since 8 Ma ago.

Key words: detrital grains, fission track, exhumation rate, southwestern Tianshan

中图分类号: 

  • P54
[1] Reiners P W. Thermochronologic Approaches to Paleotopography [J]. Reviews in Mineralogy and Geochemistry, 2007, 66: 243-267.
[2] Braun J,Van der Beek P A, Batt G. Quantitative Thermochronology: Numerical Methods for the Interpretation of Thermochronological Data [M]. Cambridge: Cambridge University Press,2006.
[3] Stock J D, Montgomery D R. Estimating Palaeorelief from Detrital Mineral Age Ranges [J]. Basin Research, 1996, 8: 317-327.
[4] Brewer I D, Burbank D W, Hodges K V. Modelling Detrital Cooling-Age Populations: Insights from Two Himalayan Catchments [J]. Basin Research, 2003, 15: 305-320.
[5] Brewer I D, Burbank D W, Hodges K V. Downstream Development of a Detrital Cooling-Age Signal Insights from 40Ar/39Ar Muscovite Thermochronology in the Nepalese Himalaya [C]//Willett S D, Hovius N, Brandon M T, et al. Tectonics, Climate, and Landscape Evolution. Boulder: Geological Society of America Special Paper, 2006: 321-338.
[6] Ruhl K W, Hodges K V. The Use of Detrital Mineral Cooling Ages to Evaluate Steady State Assumptions in Active Orogens: An Example from the Central Nepalese Himalaya [J]. Tectonics, 2005, 24: TC4015. doi 10. 1029/2004TC001712.
[7] Enkelmann E, Ehlers T A, Zeitler P K, et al. Denu-dation of the Namche Barwa Antiform, Eastern Himalaya [J]. Earth and Planetary Science Letter, 2011, 307(3/4): 323-333.
[8] Avdeev, Niemi N A. Clark M K. Doing More with Less: Bayesian Estimation of Erosion Models with Detrital Thermochronometric Data [J].Earth and Planetary Science Letters, 2011, 305(3/4): 385-395.
[9] 孙东霞, 钟大赉, 季建清, 等. 河砂岩屑磷灰石裂变径迹模拟流域热史:以藏东南察隅河为例 [J]. 地球物理学报, 2015, 58(2): 613-627. Sun Dongxia, Zhong Dalai, Ji Jianqing, et al. Inversion Model of Drainage Basins Tectono-Thermal Evolution Through Detrital AFT Ages:A Case Study of Chayu River in Southeastern Tibet [J]. Chinese Journal of Geophysics, 2015, 58(2): 613-627.
[10] Garver J I, Brandon M T, Roden-Tice M, et al. Exhumation History of Orogenic Highlands Determined by Detrital Fission Track Thermochronology [C]//Ring U, Brandon M T, Lister G S, et al. Exhumation Processes: Normal Faulting, Ductile Flow, and Erosion. London: Geological Society of London Special Publication, 1999, 154: 283-304.
[11] Brandon M T,Roden-Tice M K, Garver J I. Late Cenozoic Exhumation of the Cascadia Accretionary Wedge in the Olympic Mountains, Northwest Washington State [J]. GSA Bulletin, 1998, 110(8): 985-1009.
[12] Mancktelow N S, Grasemann B. Time-Dependent Effects of Heat Advection and Topography on Cooling Histories During Erosion [J]. Earth Planet Sci Lett, 1997,270: 167-195.
[13] Wagner G A, Reimer G M. FissionTrack Tectonics: The Tectonic Interpretation of Fission Track Apatite Ages [J]. Earth and Planetary Science Letters, 1972, 14: 263-268.
[14] Reiners P W, Ehlers T A, Garver J I, et al.Late Miocene Exhumation and Uplift of the Washington Cascade Range [J]. Geology, 2002, 30(9): 767-770.
[15] Reiners P W, Zhou Z Y, Ehlers T A, et al.Post-Orogenic Evolution of the Dabie Shan, Eastern China, from (U-Th)/He and Fission-Track Thermochronology [J]. American Journal of Science, 2003, 303: 489-518.
[16] Zhou Zuyi, Xu Changhai, Reiners P W, et al. Late Cretaceous-Cenozoic Exhumation History of Tiantangzhai Region of Dabieshan Orogen: Constraints from (U-Th)/He and Fission Track Analysis [J]. Chinese Science Bulletin, 2003, 48(11): 1151-1156.
[17] Stüwe K, White L, Brown R. The Influence of Eroding Topography on Steady-State Isotherms, Application to Fission Track Analysis [J]. Earth Planet Sci Lett, 1994, 124: 63-74.
[18] Hodges K V,Ruhl K W, Wobus C W, et al. 40Ar/39Ar Thermochronology of Detrital Minerals [J]. Reviews in Mineralogy and Geochemistry, 2005, 58: 239-257.
[19] 丁汝鑫, 陈国能, 周祖翼,等.利用低温热史恢复大别造山带晚白垩世以来的古高度 [J]. 吉林大学学报(地球科学版), 2012, 42(增刊1):247-253. Ding Ruxin, Chen Guoneng, Zhou Zuyi, et al. The Paleoelevation Reconstruction of Late Cretaceous Dabie Orogen by Low-Temperature Thermochronological Modelling Data [J]. Journal of Jilin University(Earth Science Edition), 2012, 42(Sup.1): 247-253.
[20] Turcotte D L, Schubert G. Geodynamics [M]. New York: John Wiley and Sons,1982.
[21] Braun J, Robert X. Constraints on the Rate of Post-Orogenic Erosional Decay from Thermochronological Data: Example from the Dabie Shan, China [J]. Earth Surf Proc Land, 2005, 30: 1203-1225.
[22] 陈正乐, 李丽, 刘健, 等. 西天山隆升剥露过程初步研究[J].岩石学报, 2008, 24(4): 625-636. Chen Zhengle, Li Li, Liu Jian, et al. Preliminary Study on the Uplifting-Exhumation Process of the Western Tianshan Range, Northern China [J]. Acta Petrologica Sinica, 2008, 24(4): 625-636.
[23] 王丽宁, 季建清, 孙东霞, 等. 西南天山隆起时代的河床砂岩屑磷灰石裂变径迹证据 [J]. 地球物理学报, 2010, 53(4): 931-945. Wang Lining, Ji Jianqing, Sun Dongxia, et al. The Uplift History of South-Western Tianshan-Implications from AFT Analysis of Detrital Samples [J]. Chinese Journal of Geophysics, 2010, 53(4), 931-945.
[24] 高峻,何国琦,李茂松.西天山造山带的构造变形特征研究 [J].地球学报,1997, 18(1): 1-10. Gao Jun, He Guoqi, Li Maosong. Studies on the Features of the Structural Deformations in the Western Tianshan Orogenic Belt [J]. Acta Geoscientica Sinica, 1997, 18(1): 1-10.
[25] 陈正乐, 万景林, 刘健, 等. 西天山山脉多期次隆升-剥露的裂变径迹证据 [J]. 地球学报, 2006, 27(2): 97-106. Chen Zhengle,Wan Jinglin, Liu Jian, et al. Multi-Stage Uplift and Exhumation of the West Tianshan Mountain: Evidence from the Apatite Fission-Track Dating [J]. Acta Geoscientica Sinica, 2006, 27(2): 97-106.
[26] 李秋生, 卢德源, 高锐, 等. 新疆地学断面(泉水沟—独山子)深地震测深成果综合研究 [J]. 地球学报, 2001, 22(6): 534-540. Li Qiusheng, Lu Deyuan, Gao Rui, et al. An Integrated Study of Deep Seismic Sounding Profiling Along Xinjiang Global Geosciences Transect (Quanshuigou-Dushanzi) [J]. Acta Geoscientica Sinica,2001, 22(6): 534-540.
[27] Neil E A, Houseman G A. Geodynamics of the Tarim Basin and the Tian Shan in Central Asia [J]. Tectonics, 1997, 16: 571-584.
[28] 邱楠生. 中国西北部盆地岩石热导率和生热率特征 [J]. 地质科学, 2002, 37(2): 196-206. Qiu Nansheng. Characters of Thermal Conductivity and Radiogenic Heat Production Rate in Basins of Northwest China [J]. Chinese Journal of Geology, 2002, 37(2): 196-206.
[29] 赵平, 汪集旸. 热流-生热率线性关系研究综述 [J]. 地球物理学进展, 1995, 10(2): 16-31. Zhao Ping, Wang Jiyang. Review on the Linear Heat-Flow Heat Production Relation [J]. Progeress in Geophysics, 1995, 10(2): 16-31.
[30] 袁炳强, Poudjom Djomani Y H, 王平, 等. 北冰洋—欧亚大陆—太平洋地学断面东南段岩石圈有效弹性厚度 [J]. 地球科学:中国地质大学学报, 2002, 27(4): 397-402. Yuan Bingqiang, Poudjom Djomani Y H,Wang Ping, et al. Effective Lithospheric Elastic Thickness of Southeastern Part of Arctic Ocean-Eurasia Continent-Pacific Ocean Geoscience Transect [J]. Earth Science:Journal of China University of Geosciences,2002, 27(4): 397-402.
[31] 付永涛, 范守志, 施小斌. 关于岩石圈有效弹性厚度的地质理解 [J]. 地质科学, 2005, 40(4): 585-593. Fu Yongtao, Fan Shouzhi, Shi Xiaobin. Geological Interpretation of the Lithosphere Effective Elastic Thickness [J]. Chinese Journal of Geology, 2005, 40(4): 585-593.
[32] 雷显权,陈运平,赵俊猛, 等.天山造山带深部探测及地球动力学研究进展 [J].地球物理学进展, 2012, 27(2): 417-428. Lei Xianquan, Chen Yunping, Zhao Junmeng, et al. Deep Probe in the Tianshan Orogenic Belt and Its Geodynamics [J]. Progress in Geophysics, 2012, 27(2): 417-428.
[33] 赵俐红, 姜效典, 金煜, 等. 中国西部大陆岩石圈的有效弹性厚度研究 [J]. 地球科学:中国地质大学学报, 2004, 29(2): 183-190. Zhao Lihong, Jiang Xiaodian, Jin Yu, et al. Effective Elastic Thickness of Continental Lithosphere in Western China [J]. Earth Science:Journal of China University of Geosciences,2004, 29(2): 183-190.
[1] 丁清峰, 付宇, 吴昌志, 董莲慧, 屈迅, 曹长胜, 夏明毅, 孙洪涛. 新疆西南天山阿万达金矿床成矿流体演化[J]. 吉林大学学报(地球科学版), 2015, 45(1): 142-155.
[2] 李天义,何治亮,何生,周雁,孙冬胜,沃玉进,杨兴业. 中扬子北缘京山二叠系古油藏特征及石油地质意义[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1740-1752.
[3] 侯明才, 李智武, 陈洪德. 中-新生代龙门山的差异隆升[J]. J4, 2012, 42(1): 104-111.
[4] 高军平, 方小敏, 宋春晖, 李生喜, 薛建平. 青藏高原北部中-新生代构造-热事件:来自柴西碎屑磷灰石裂变径迹的制约[J]. J4, 2011, 41(5): 1466-1475.
[5] 方石, 刘招君,黄湘通,郭巍,刘志强. 大兴安岭东南坡新生代隆升及地貌演化的裂变径迹研究[J]. J4, 2008, 38(5): 771-0776.
[6] 张帆, 王孔伟,刘立. 依-舒地堑下第三系地层格架与成因单元[J]. J4, 2007, 37(1): 112-0119.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!