吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (5): 1480-1490.doi: 10.13278/j.cnki.jjuese.201705202

• 地质工程与环境工程 • 上一篇    下一篇

黄土高原城市工程地质分区——以铜川地区为例

彭湘林, 范文, 魏亚妮, 田陆, 邓龙胜   

  1. 长安大学地质工程与测绘学院, 西安 710054
  • 收稿日期:2017-06-05 出版日期:2017-09-26 发布日期:2017-09-26
  • 通讯作者: 范文(1957-),男,教授,博士生导师,主要从事岩土力学、地质工程、地震工程及岩土本构等方面的研究,E-mail:fanwen@chd.edu.cn E-mail:fanwen@chd.edu.cn
  • 作者简介:彭湘林(1986-),男,博士研究生,主要从事地质工程方面的研究,E-mail:195259645@qq.com
  • 基金资助:
    重点基础研究发展计划("973"计划)项目(2014CB744701);国家自然科学基金项目(40972181,413032251),中国地质调查局项目(12120114056901)

Urban Engineering Geological Zoning of Loess Plateau:A Case Study of Tongchuan Region

Peng Xianglin, Fan Wen, Wei Yani, Tian Lu, Deng Longsheng   

  1. College of Geology Engineering and Geomatics, Chang'an University, Xi'an 710054, China
  • Received:2017-06-05 Online:2017-09-26 Published:2017-09-26
  • Supported by:
    Support by National Basic Research Program ("973" Program) of China (2014CB744701), National Natural Science Foundation of China (40972181, 413032251) and Project of China Geological Survey (12120114056901)

摘要: 城市新区的科学选址及规划需要以明确的工程地质条件为基础,因此开展城市周边工程地质分区研究已成为当前城镇发展工作中的关键环节。本文以铜川地区为例,根据地质构造及地貌演化确定了地貌类型,依据第四纪沉积物组合差异将地层沉积结构划分为风成沉积型、冲洪积型及风成-冲洪积复合沉积型。根据湿陷性试验结果,研究区内黄土埋深超过22 m不具自重湿陷性,埋深超过24 m不具湿陷性;根据湿陷量计算值将研究区划分为非湿陷区、2级、3级和4级湿陷区。在此基础上将研究区划分为4个区(低中山区、黄土台塬区、黄土丘陵区和河谷阶地区)及8个亚区,并总结了各工程地质区的工程特性,其中:低中山区及黄土丘陵区不适宜建筑;黄土台塬区的2级湿陷高台塬亚区和2级湿陷低台塬亚区为适宜建筑;河谷阶地区部分适宜建筑;黄土台塬区的3级、4级湿陷高台塬亚区及3级、4级湿陷低台塬亚区进行地基处理后适宜建筑。研究成果可为黄土高原地区相似地质条件下的未来城市选址及工程建设规划提供指导和借鉴。

关键词: 黄土高原, 湿陷性, 工程地质条件, 工程地质分区, 铜川地区

Abstract: As a key link in the current urban development, the scientific site selecting and planning of a new urban area needs to be based on the clear engineering geological conditions.Taking Tongchuan region as an example,according to the latest geological structure and landform evolution, we determined the types of landform and divided the the sedimentary structures into eolian deposition, fluvial and pluvial deposition, and complex deposition in respect of the Quaternary sediments. According to the results of collapsibility tests, the depth more than 22 m of the loess in the study area is without self-weight collapsibility, and the depth more than 24 m is without collapsibility. Based on the calculation of the collapsibility amount, the study area is graded into non-collapsible areas, level 2, level 3, and level 4 collapsible zone. There are 4 zones (low mountainous, loess platform, loess hilly, andvalley terrace) and 8 sub-zones. On the basis, we summarized the engineering characteristics of each engineering geological area. Of them, the low mountainous areas and loess hilly areas are not suitable for construction; while the level 2 collapsible of high and low loess plateau, part of valley terrace areas after a foundation treatment,and level 3-4 collapse of high and low loess plateaus are suitable for construction. The research results provide some guidance and reference for future urban site selection and project construction planning under similar geological conditions in Loess Plateau.

Key words: Loess Plateau, collapsibility, engineering geological condition, engineering geological division, Tongchuan region

中图分类号: 

  • P642.1
[1] 罗来兴.划分晋西、陕北、陇东黄土区域沟间地与沟谷的地貌类型[J]. 地理学报,1956,22(3):201-222. Luo Laixing. A Tentative Classification of Landforms in the Loess Plateau[J]. Acta Geographica Sinica, 1956, 22(3):201-222.
[2] 吴伯甫,陈明荣,陈宗兴,等.中国的黄土高原[M]. 西安:陕西人民出版社,1991. Wu Bofu, Chen Mingrong, Chen Zongxing, et al. The Loess Plateau of China[M]. Xi'an:Shaanxi People's Publishing House, 1991.
[3] 刘国昌. 中国工程地质分区原则[J]. 水文地质工程地质,1959,3(7):22-24. Liu Guochang. Principles of Engineering Geological Zoning in China[J]. Hydrogeology and Engineering Geology, 1959, 3(7):22-24.
[4] Dai F C, Liu Y H, Wang S J. Urban Geology:A Case Study of Tongchuan City, Shaanxi Province, China[J]. Engineering Geology, 1994, 38(1):165-175.
[5] 王斌, 郑洪波, 王平, 等. 渭河盆地新生代地层与沉积演化研究:现状和问题[J]. 地球科学进展, 2013, 28(10):1126-1135. Wang Bin, Zheng Hongbo, Wang Ping, et al. The Cenozoic Strata and Depositional Evolution of Weihe Basin:Progresses and Problems[J]. Advances in Earth Science, 2013, 28(10):1126-1135.
[6] 卢全中, 彭建兵. 黄土体工程地质的研究体系及若干问题探讨[J]. 吉林大学学报(地球科学版), 2006, 36(3):404-409. Lu Quanzhong, Peng Jianbing. Research on Systematic Frame and Some Problems of Engineering Geology of Loess Mass[J]. Journal of Jilin University (Earth Science Edition), 2006, 36(3):404-409.
[7] 蔡怀恩,张继文,秦广平. 浅谈延安黄土丘陵沟壑区地形地貌及工程地质分区[J]. 土木工程学报,2015,48(增刊2):1203-1208. Cai Huai'en, Zhang Jiwen, Qin Guangping. Simple Discuss on Topography and Engineering Geology Zoning in Loess Hilly Gully Region of Yan'an[J]. China Civil Engineering Journal, 2015, 48(Sup.2):1203-1208.
[8] 高国瑞. 黄土显微结构分类与湿陷性[J].中国科学:B辑,1980(12):1203-1208. Gao Guorui. Microstructure Classification and Wet Subsidence of Loess Microstructure[J]. China Science:Serious B, 1980(12):1203-1208.
[9] 雷翔义. 中国黄土的孔隙类型与湿陷性[J].中国科学:B辑,1987(12):1309-1316. Lei Xiangyi. The Pore Type and Collapsibility of Loess in China[J]. China Science:Serious B, 1987(12):1309-1316.
[10] 张泽, 周泓, 秦琦, 等. 冻融循环作用下黄土的孔隙特征试验[J]. 吉林大学学报(地球科学版),2017,47(3):839-847. Zhang Ze, Zhou Hong, Qin Qi, et al. Experimental Study on Porosity Characteristics of Loess Under Freezing-Thawing Cycle[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(3):839-847.
[11] 庞奖励, 黄春长. 黄土-古土壤序列的典型微结构与 1 万年来的环境演化:以关中地区的全新世黄土剖面为例[J]. 吉林大学学报(地球科学版),2002, 32(3):268-272. Pang Jiangli, Huang Chunchang. Typical Micro Morphological Features of the Loess-Palaeosol Sequence and Environmental Change During Last 10 000 Years[J]. Journal of Jilin University (Earth Science Edition), 2002, 32(3):268-272.
[12] 李秉成, 胡培华, 王艳娟. 关中泾阳塬全新世黄土剖面磁化率的古气候阶段划分[J]. 吉林大学学报(地球科学版), 2009, 39(1):99-106. Li Bingcheng, Hu Peihua, Wang Yanjuan. Partition of the Palaeoclimate Stages in the Holocene on the Susceptibility of Loess in the Loess Plateau of the Jingyang, Guanzhong[J]. Journal of Jilin University (Earth Science Edition), 2009, 39(1):99-106.
[13] GB 50021-2001 岩土工程勘察规范[S].北京:中国建筑工业出版社,2001. GB 50021-2001 Code for Investigation of Geotechnical Engineering[S].Beijing:China Architecture & Building Press, 2001.
[14] GB 50007-2011 建筑地基基础设计规范[S]. 北京:中国建筑工业出版社,2011. GB 50007-2011 Code for Design of Building Foundation[S].Beijing:China Architecture & Building Press, 2011.
[15] 宋焱勋. 陇东地区黄土工程地质分区和变形特性研究[J]. 土工基础,2004,18(1):50-54. Song Yanxun. The Engineering Geological Zoning and Deformation of Loess in Longdong District[J]. Soil Engineering and Foundation, 2004, 18(1):50-54.
[16] 宋盛渊,王清,孙涛,等. 天津滨海新区地基土工程地质分区的可拓学评价[J]. 东北大学学报(自然科学版),2014,35(10):1502-1506. Song Shengyuan, Wang Qing, Sun Tao, et al. Extenics Evaluation of Engineering Geological Zoning of Foundation Soil in Tianjin Binhai New Area[J]. Journal of Northeastern University (Natural Science), 2014, 35(10):1502-1506.
[1] 庄建琦,彭建兵,张利勇. 不同降雨条件下黄土高原浅层滑坡危险性预测评价[J]. 吉林大学学报(地球科学版), 2013, 43(3): 867-876.
[2] 邢玉东,王常明,张立新,匡少华. 阜新-朝阳高速公路段湿陷性黄土路基处理方法及效果[J]. J4, 2008, 38(1): 98-0104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!