吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (5): 1582-1588.doi: 10.13278/j.cnki.jjuese.201705306

• 地球探测与信息技术 • 上一篇    

斜轴高斯投影在跨带物探长剖面测量中的应用

王明常1,2, 李彦妮2, 刘财2, 马国庆2, 牛雪峰2, 王民水2   

  1. 1. 国土资源部城市土地资源监测与仿真重点实验室, 广东 深圳 518000;
    2. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2016-12-09 出版日期:2017-09-26 发布日期:2017-09-26
  • 通讯作者: 牛雪峰(1970),男,教授,主要从事摄影测量与遥感的教学研究,E-mail:niuxf@jlu.edu.cn E-mail:niuxf@jlu.edu.cn
  • 作者简介:王明常(1975),男,教授,博士,主要从事遥感与地理信息系统的教学研究,E-mail:wangmc@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41430322);国土资源部城市土地资源监测与仿真重点实验室开放基金项目(KF-2016-02-008);区域开发与环境响应湖北省重点实验室开放研究基金项目(2015(B)003)

Application of Oblique Axis Gauss Projection in Geophysical Prospecting Long-Distance Profile Measurement

Wang Mingchang1,2, Li Yanni2, Liu Cai2, Ma Guoqing2, Niu Xufeng2, Wang Minshui2   

  1. 1. Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Land and Resources, Shenzhen 518000, Guangdong, China;
    2. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2016-12-09 Online:2017-09-26 Published:2017-09-26
  • Supported by:
    Supported by the National Natural Science Foundation of China(41430322), the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, MLR (KF-2016-02-008) and the Open Research Fund Program of Hubei Province Key Laboratory of Regional Development and Environmental Response(2015(B)003)

摘要: 在高精度物探重力测量中,需要提供高精度的平面位置和高程。在物探长剖面测量中,对东西跨度较大的线路进行控制测量时,高斯-克吕格投影分带和高程引起的投影变形较大,不能满足长距离重力测量对精度的要求。基于高斯-克吕格投影的基本理论,采用斜轴变形椭球高斯投影方法,结合最小二乘法、坐标转换理论及椭球变换,将原始椭球构建斜轴变形椭球,可以减小高斯投影横坐标和高程投影变形的影响,避免高斯投影分带过多对应用的影响。以漠河—呼和浩特物探长剖面测地数据为例,利用GPS快速静态测量获得平面和高程位置,测点距离约1 km,通过斜轴高斯投影进行投影,最大平面精度为67.87 mm/km,最大高程精度为53.039 mm/km,最大投影综合变形的中误差为88.51 mm/km,大大减小了投影变形,提高了地图投影精度。因此,该投影在跨度物探长剖面测量中的应用具有一定优势。

关键词: 斜轴高斯投影, 重力测量, 物探长剖面, GPS, 误差

Abstract: In high precision geophysical prospecting gravimetry, high accurate plane position and elevation are needed. The projection distortion caused by Gauss-Kruger projection zoning and elevation is too big to meet the precision requirement for control survey in long distance profile of geophysical prospecting. The abscissa projection distortion and elevation influence of Gauss projection can be reduced by the method of oblique axial deformation of the ellipsoid Gauss projection with least squares method, coordinating with the theory of ellipsoid transformation and the theory of Gauss-Kruger. Taking the long-distance profile of Mohe-Hohhot as an example, we obtained the position of plane and elevation using GPS fast static measurement. The distance between measuring points is 1 km in this example. The accuracy obtained by this method is high. The maximum plane precision is 67.87 mm/km, and the maximum height accuracy is 53.039 mm/km. It can be concluded that our method has an advantage in problem solving in geophysical prospecting of long-distance profiles.

Key words: oblique axis Gauss projection, gravimetry, geophysical prospecting long-distance profile, global positioning system, error

中图分类号: 

  • P22
[1] 任秀云,刘立宝,杨君国,等.机载脉冲激光雷达剖面测量技术的进展及应用[J]. 遥感技术与应用,2011,26(3):392-398. Ren Xiuyun, Liu Libao, Yang Junguo, et al. Development and Applications of Airborne LiDAR Profilometer[J]. Remote Sensing Technology and Application, 2011, 26(3):392-398.
[2] 刘财,杨宝俊,冯晅,等.论油气资源的多元勘探[J]. 吉林大学学报(地球科学版), 2016, 46(4):1208-1220. Liu Cai, Yang Baojun, Feng Xuan, et al. Multivariate Exploration Technology of Hydrocarbon Resources[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4):1208-1220.
[3] 李世安, 刘经南, 施闯. 应用GPS建立区域独立坐标系中椭球变换的研究[J]. 武汉大学学报(信息科学版),2005,30(10):888-891. Li Shi'an, Liu Jingnan, Shi Chuang. Study of the Ellipsoid Transformation on the Establishment of Local Independence Coordinate System Using GPS Technique[J]. Geomatics and Information Science of Wuhan University, 2005, 30(10):888-891.
[4] 况金著,夏神州.通过椭球变换建立区域坐标系的高斯投影算法[J]. 地矿测绘,2011,27(4):11-14. Kuang Jinzhu, Xia Shenzhou. Establish Regional Coordinate System with Gauss-Kruger Projection Calculation Through Ellipsoid Transformation[J]. Surveying and Mapping of Geology and Mineral Resources, 2011, 27(4):11-14.
[5] 吕慧玲. 斜轴墨卡托投影方法在郑西客专中的应用研究[J]. 测绘信息与工程,2009,34(1):26-28. Lü Huiling. Application of Oblique Mercator Projection Method to Zhengxi Special Passenger Transport Line[J]. Journal of Geomatics, 2009, 34(1):26-28.
[6] 王解先,伍吉仓,高小兵. 斜轴墨卡托投影及其在高铁建设工程中的应用[J]. 工程勘察,2011,39(8):69-72. Wang Jiexian, Wu Jicang, Gao Xiaobing. Oblique Mercator Projection and Its Applications on High Speed Railway Construction[J]. Geotechnical Investigation & Surveying, 2011, 39(8):69-72.
[7] 杨启和. 论高斯投影换带的数值计算方法[J]. 测绘学报,1982,11(1):18-31. Yang Qihe. Discussing the Numerical Method of Gauss Projection Changer[J]. Acta Geodaetica et Cartographica Sinica, 1982, 11(1):18-31.
[8] 边少锋, 刘强, 李忠美, 等. 斜轴变形椭球高斯投影方法[J]. 测绘学报, 2015, 44(10):1071-1077. Bian Shaofeng, Liu Qiang, Li Zhongmei, et al. An Alteration of Gauss Projection Based on Oblique Deformed Ellipsoid[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(10):1071-1077.
[9] 曾启雄. 空间直角坐标直接解算大地坐标的闭合公式[J]. 测绘学报,1981,10 (2):83-95. Zeng Qixiong. Solve Geodetic Coordinates Closed Equation with Space Cartesian Coordinate[J]. Acta Geodaetica et Cartographica Sinica, 1981, 10(2):83-95.
[10] 边少锋,柴洪洲,金际航. 大地坐标系与大地基准[M].北京:国防工业出版社, 2005. Bian Shaofeng,Chai Hongzhou, Jin Jihang. Geodetic Coordinates and Geodetic Datum[M]. Beijing:National Defense Industry Press, 2005.
[11] Bowring B R. The Accuracy of Geodetic Latitude and Height Equations[J]. Survey Review, 1985, 28(218):202-206.
[12] 赵长胜. 高斯投影坐标反算的迭代算法[J]. 测绘通报,2004 (3):16-17. Zhao Changsheng. Iterative Algorithm of Gauss Projection Plane Rectangular Coordinates[J]. Bulletin of Surveying and Mapping, 2004(3):16-17.
[13] 李厚朴, 边少锋. 高斯投影的复变函数表示[J]. 测绘学报,2008,37(1):5-9. Li Houpu, Bian Shaofeng. The Expressions of Gauss Projection by Complex Numbers[J]. Acta Geodaetica et Cartographica Sinica, 2008,37(1):5-9.
[1] 李光, 渠晓东, 黄玲, 方广有. 基于磁偶极子的频率域电磁系统几何误差分析[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1255-1267.
[2] 白相东, 迟宝明, 关成尧, 张艳, 袁四化, 梁文天. 鄂尔多斯南缘构造带现今地块运动模式[J]. 吉林大学学报(地球科学版), 2015, 45(3): 674-682.
[3] 顾玲嘉, 赵凯,任瑞治,孙健. 两种被动微波遥感混合像元分解方法比较[J]. 吉林大学学报(地球科学版), 2013, 43(6): 2057-2064.
[4] 王兆国,程顺有,刘财. 地球物理勘探中几种二维插值方法的误差分析[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1997-2004.
[5] 马荣, 石建省, 刘继朝. 可变模糊理论与模糊粗糙集在地下水污染评估中的应用[J]. J4, 2012, 42(4): 1130-1138.
[6] 韩复兴, 孙建国, 王坤. 速度模型的光滑处理分析[J]. J4, 2011, 41(5): 1610-1616.
[7] 周永恒, 李守义, 张璟, 徐山. 基于地质背景分析的区域化探数据系统误差校正[J]. J4, 2011, 41(3): 753-758.
[8] 林红波, 李月, 徐学纯, 马海涛. 减小离散误差的时频峰值滤波算法[J]. J4, 2011, 41(2): 572-578.
[9] 肖根如, 甘卫军, 陈为涛, 程佳. 青藏高原班公-怒江缝合带现今运动状况的GPS观测研究[J]. J4, 2010, 40(6): 1496-1502.
[10] 汤洁,吕川,李昭阳,王晨野,张景成,李海毅. 基于灰色聚类与3S耦合方法的生态环境质量变化趋势研究--以吉林省大安市为例[J]. J4, 2008, 38(6): 1037-1043.
[11] 于小平,张廷玉,刘财,陈增宝,许惠平,庞贺民. 应用GPS数据与重力数据确定大地水准面[J]. J4, 2008, 38(5): 904-0907.
[12] 于小平,杨国东,许惠平,肖锋,赵震宇,刘财,孟令顺. 带状区域GPS大地高转换成正常高的研究[J]. J4, 2007, 37(1): 185-0189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!