吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (6): 1838-1854.doi: 10.13278/j.cnki.jjuese.201706301

• 地球探测与信息技术 • 上一篇    下一篇

磁电法基本原理、发展现状及前景展望

翁爱华, 李斯睿, 杨悦, 李大俊, 李建平, 李世文   

  1. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2017-03-01 出版日期:2017-11-26 发布日期:2017-11-26
  • 通讯作者: 李斯睿(1989),男,博士研究生,主要从事电磁法正反演研究,E-mail:lsr333lsr333@sina.com E-mail:lsr333lsr333@sina.com
  • 作者简介:翁爱华(1969),男,教授,博士生导师,主要从事电磁法勘探方法技术、正反演理论研究,E-mail:wengah@jlu.edu.cn
  • 基金资助:
    国家重大科研仪器专项(2011YQ05006010);吉林大学研究生创新基金项目(2016203)

Basic Principle, Current Status and Prospect of Magnetometric Resistivity

Weng Aihua, Li Sirui, Yang Yue, Li Dajun, Li Jianping, Li Shiwen   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2017-03-01 Online:2017-11-26 Published:2017-11-26
  • Supported by:
    Supported by National Key Scientific Instrument and Equipment Development Projects, China(2011YQ05006010)and Graduate Innovation Fund of Jilin University (2016203)

摘要: 磁电法作为一类特点明显的电磁勘探方法在外国(美国、加拿大、澳大利亚等)已经有了成熟的应用,但是该类方法在我国应用研究较少,甚至不为众人所知。本文从数据采集与分析、正反演技术以及应用现状3个方面详细介绍了国内外磁电法的技术原理和发展现状;总结了磁电法的优缺点及适用的条件,对于我国未来磁电法的发展提出了建议。综述表明:1)目前地面数据采集为中梯方式,可以借鉴其他应用成熟的电磁法观测方式;2)磁电法从静电场理论出发无法得到绝对电导率,可以尝试频率域理论;3)地面数据的深度分辨能力需要提高,可以通过多源多分量三维反演来提高反演的准确性;4)建议在国内将磁电法的应用范围扩展到井中、海洋以及环境和工程领域。

关键词: 磁电法, 磁激发极化法, 亚音频磁测法, 地面勘探, 井中勘探, 海洋勘探, 正反演

Abstract: As an effective and efficient electromagnetic method, magnetometric resistivity method has been extensively used worldwide; however, it is unfamiliar in China. Therefore, this paper tries to introduce the fundamentals of this technology on the three aspects, i.e. data collection and analysis, forward modeling, and inversion through case studies, in order to outline the potential development in China. In this review, we indicate that:1) most of the time, gradient array is used for surface MMR data collection, yet the survey layout in other electromagnetic method can be adapted; 2) from view point of electrostatic theory, absolute conductivity cannot be obtained by the magnetometric resistivity method; however, if we collect data in frequency domain, the problem may be solved; 3) deep resolution of surface MMR data need to be, and can be improved through multi-source and multi-component 3D inversion; 4) in China, MMR could be extended to borehole exploration, marine exploration, and applied to the scope of environment, and engineering.

Key words: magnetometric resistivity method (MMR), magnetic induced-polarization method (MIP), sub-audio magnetics method (SAM), surface exploration, borehole exploration, marine exploration, forward modeling and inversion

中图分类号: 

  • P631
[1] Bouchedda A, Giroux B, Glencor M A. Down-Hole Magnetometric Resistivity Inversion for Zinc and Lead Lenses Localization at Tobermalug, County Limerick, Irland[C]//2015 SEG New Orleans Annual Meeting. New Orleans:[s.n.], 2015:2007-2011.
[2] 傅良魁. 磁电勘探法原理[M]. 北京:地质出版社,1984. Fu Liangkui. The Principle of Magnetometric Resistivity Method[M]. Beijing:Geological Publishing House, 1984.
[3] 邓靖武. 磁电法正演理论研究[D]. 北京:中国地质大学,2005. Deng Jingwu. Forward Theory Study of Magnetometric Resistivity and Induced Polarization Methods[D]. Beijing:China University of Geosciences, 2005.
[4] Chen J, Haber E, Oldenburg D W. Three-Dimensional Numerical Modelling and Inversion of Magnetometric Resistivity Data[J]. Geophys J Int, 2002, 149(3):679-697.
[5] Haber E. A Mixed Finite Element Method for the So-lution of the Magnetostatic Problem with Highly Discontinuous Coefficients in 3D[J]. Computational Geosciences, 2000, 4(4):323-336.
[6] Jin J. The Finite Element Method in Electromagnetics[M]. New York:Wiley-IEEE Press, 2002.
[7] Haber E, Ascher U M. Fast Finite Volume Modeling of 3D Electromagnetic Problems with Highly Discontinuous Coefficients[J]. SIAM J Sci Comput, 2001, 22(6):1943-1961.
[8] Chen J, Oldenburg D W, Haber E. Reciprocity in Ele-ctromagnetics:Application to Modelling Marine Magnetometric Resistivity Data[J]. Physics of the Earth and Planetary Interiors, 2005, 150(1):45-61.
[9] Fathianpour N, Heinson G, White A. The Total Field Magnetometric Resistivity (TFMMR) Method:Part I:Theory and 2.5D Forward Modeling[J]. Exploration, Geophysics, 2005, 36(2):181-188.
[10] Fathianpour N, Heinson G, White A. The Total Fie-ld Magnetometric Resistivity (TFMMR) Method:Part Ⅱ:2D Resistivity Inversion of Data from the Flying Doctor Deposit, Broken Hill[J]. Australia Exploration Geophysics, 2005, 36(2):189-197.
[11] Howland-Rose A W, Linford G, Pitcher D H, et al. Some Recent Magnetic Induced-Polarization Developments:Part I:Theory[J]. Geophysics, 1980, 45(1):37-54.
[12] Cattach M K, Stanley J M, Lee S J, et al. Sub-Audio Magnetics (SAM):A High Resolution Technique for Simultaneously Mapping Electrical and Magnetic Properties[J]. Exploration Geophysics, 1993, 24(4):387-400.
[13] Fathianpour N, Cattach M K. Analytical Solutions for the Total Field Magnetometric Resistivity (TFMMR) Technique[J]. Exploration Geophysics, 1995, 26(3):158-166.
[14] 李建华,林品荣,郭鹏. 磁激电方法技术试验研究[J].地震地质,2010,32(3):492-499. Li Jianhua, Lin Pinrong, Guo Peng. A Trial Study of Magnetic Induced Polarization[J]. Seismology and Geology, 2010, 32(3):492-499.
[15] Kofoed V O, Jessop M L, Wallace M J, et al. Uni-que Applications of MMR to Track Preferential Groundwater Flow Paths in Dams, Mines, Environmental Sites, and Leach Fields[J]. Leading Edge, 2011, 30(2):192-204.
[16] Asten M W. The Downhole Magnetometric Resistivi-ty (DHMMR) Method[J]. Expl Geophys, 1988, 19(2):12-16.
[17] Edwards R N, Nabighian M N. The Magnetometric Resistivity Method in Electromagnetic Methods in Applied Geophysics:Investigations in Geophysics[J]. Society of Exploration Geophysicists, 1991, 2:47-104.
[18] Oppliger G L. Three-Dimensional Terrain Effects in Electrical and Magnetometric Resistivity Surveys[D]. Berkeley:University of California, 1982.
[19] Oppliger G L. Three-Dimensional Terrain Corrections for Mise-à-la-Masse and Magnetometric Resistivity Surveys[J]. Geophysics, 1984, 49(10):1718-1729.
[20] Spies B R. Electrical and Electromagnetic Borehole Measurements:A Review[J]. Surveys in Geophysics, 1996, 17(4):517-556.
[21] Purss M B J, Cull J P. B-Field Probes for Downhole Magnetometric Resistivity Surveys[J]. Exploration Geophysics, 2003, 34(4):233-240.
[22] Acosta J E, Worthington M H. A Borehole Mag-netometric Resistivity Experiment[J]. Geophys Prospect, 1983, 31:800-809.
[23] Stolz E M G. Direct Detection of Gold Bearing Structures at St Ives, WA-DHEM vs DHMMR[J]. Exploration Geophysics, 2003, 34(2):131-136.
[24] Elders J A, Asten M W. Minimization of Receiver Noise in Downhole MMR Surveys[C]//SEG Technical Program Expanded Abstracts.[S. l.]:SEG, 2000(1):2484.
[25] Purss M B J, Cull J P, Asten M W. Simultaneous Modelling of the Phase and Amplitude Components of Downhole Magnetometric Resistivity Data[J]. Journal of Applied Geophysics, 2003, 54(1):1-14.
[26] Elders J A, Asten M W. A Comparison of Receiver Technologies in Borehole MMR and EM Surveys[J]. Geophysical Prospecting, 2004, 52(2):85-96.
[27] Chen J, Oldenburg D W. Magnetic and Electric Fields of Direct Currents in a Layered Earth (Short Note)[J]. Exploration, Geophysics, 2004, 35(2):157-163.
[28] Edwards N. Marine Controlled Source Electromagne-tics:Principles, Methodologies, Future Commercial Applications[J]. Surveys in Geophysics, 2005, 26(6):675-700.
[29] Edwards R N, Law L K, Wolfgram P A, et al. First Results of the MOSES Experiment:Sea Sediment Conductivity and Thickness Determination, Bute Inlet, British Columbia, by Magnetometric Offshore Electrical Sounding[J]. Geophysics, 1985, 50(1):153-161.
[30] Edwards R N, Law L K, Delaurier J M. On Mea-suring the Electrical Conductivity of the Oceanic Crust by a Modified Magnetometric Resistivity Method[J]. Journal of Geophysical Research, 1981, 86(B12):11609-11615.
[31] Edwards R N, Nobes D C, Gómez-Treviño E. Off-shore Electrical Exploration of Sedimentary Basins:The Efforts of Anisotropy in Horizontally Isotropic, Layered Media[J]. Geophysics, 1984, 49(5):566-576.
[32] Matsuno T, Kimura M, Seama N. Electrical Resis-tivity Structure of the Snail Site at the Southern Mariana Trough Spreading Center[C]//Subseafloor Biosphere Linked to Hydrothermal Systems.[S. l.]:Springer Japan, 2015:241-251.
[33] Key K. Marine Electromagnetic Studies of Seafloor Resources and Tectonics[J]. Surveys in Geophysics, 2012, 33(1):135-167.
[34] Seama N, Tada N, Goto T N, et al. A Continuously Towed Vertical Bipole Source for Marine Magnetometric Resistivity Surveying[J]. Earth Planets & Space, 2013, 65(8):883-891.
[35] Chave A D, Constable S C, Edwards R N. Electrical Exploration Methods for the Seafloor[C]//Nabighian M N. Electromagnetic Methods in Applied Geophysics:Investigations in geophysics.[S. l.]:SEG, 1991:931-966.
[36] Chen J, Oldenburg D W. A New Formula to Com-pute Apparent Resistivities from Marine Magnetometric Resistivitydata[J]. Geophysics, 2006, 71(3):73.
[37] Wolfgram P A, Edwards R N, Law L K, et al. Po-lymetallic Sulfide Exploration on the Deep Sea Floor:The Feasibility of the MINI-MOSES Experiment[J]. Geophysics, 1986, 51(9):1808-1818.
[38] Chen J, Oldenburg D W. Inversion of Marine MMR Data[C]//Expanded Abstracts CPS/SEG 2004 International Geophysical Conference (Volume Ⅱ).[S. l.]:CPS/SEG, 2004:672-676.
[39] Yooyuanyong S. Mathematical Model of MMR Inver-sion for Geophysical Data[J]. Songklanakarin Journal of Science & Technology, 2007, 29(4):1417-1426.
[40] Edwards R N, Lee H, Nabighian M N. On the Theo-ry of Magnetometric Resistivity (MMR) Methods[J]. Geophysics, 1978, 43(6):1176-1203.
[41] Sezginer A, Habashy T M, Wait J R. An Image Me-thod to Compute the Static Magnetic Field Due to Currents Injected into a Homogeneous, Conducting, and Magnetically Polarizable Half-Space[J]. Radio Science, 1988, 23(1):41-45.
[42] Inayat-Hussain A A. Magnetic Field of a Direct Cu-rrent in a Cylindrical-Shaped Conductor Imbedded in a Resistive Half-Space Beneath a Conductive Surface Layer[J]. J Appl Phys, 1989, 66(10):4587-4593.
[43] Inayat-Hussein A A. Magnetic Fields of Direct Cu-rrents in Horizontally Stratified Conductors[J]. J Appl Phys, 1989, 65(9):3731-3732.
[44] Gómez-Treviño E, Edwards R N. Magnetometric Re-sistivity (MMR) Anomalies of Two Dimensional Structures[J]. Geophysics, 1979, 44(5):947-958.
[45] Nabighian M N, Oppliger G L, Edwards R N, et al. Cross-Hole Magnetometric Resistivity (MMR)[J]. Geophysics, 1984, 49(8):1313-1326.
[46] Cheesman S J, Edwards R N. Current Channelling in Square Plates with Applications to Magnetometric Resistivity[J]. Geophys Prospect, 1989, 37:553-581.
[47] Hvoždara M, Kaikkonen P. The Boundary Integral Calculations of the Forward Problem for D C Sounding and MMR Methods for a 3-D Body near a Vertical Contact[J]. Studia Geophysica et Geodaetica, 1994, 38(4):375-398.
[48] Méndez-Delgado S, Gómez-Treviño E, Pérez-Flores M A. Forward Modelling of Direct Current and Low-Frequency Electromagnetic Fields Using Integral Equations[J]. Geophysical Journal International, 1999, 137(2):336-352.
[49] Pai D M, Yeoh J P. Downhole Magnetometric Resi-stivity Response of a Half-Plane Conductor[J]. Geophysics, 1987, 52(3):353-362.
[50] McGillivray P R. Forward Modeling and Inversion of D C Resistivity and MMR Data[D]. Vancouver:The University of British Columbia, 1992.
[51] Yang C H, Tseng H W. Topographic Responses in Magnetometric Resistivity Modeling[J]. Geophysics, 1992, 57(10):1409-1478.
[52] Boggs D B. The Theory and Application of Sub-Audio Magnetic Data Acquisition and Numerical Modeling[D]. Armidale:University of New England, 1999.
[53] Boggs D B, Stanley J M, Cattach M K. Three-Di-mensional Numerical Modeling of Sub-Audio Magnetic Data[J]. Expl Geophys, 1999, 30:147-156.
[54] Lassner L A. Examining the Effects of Mid Ocean Ridge Topography on 3D Marine Magnetometric Resistivity Model Responses[D]. Boston:Massachusetts Institute of Technology, 2004.
[55] Yooyuanyong S, Sripanya W. Mathematical Mode-lling of Magnetometric Resistivity Sounding Earth Structures[J]. Thai Journal of Mathematics, 2005, 3(2):249-258.
[56] Yooyuanyong S, Sripanya W. Magnetic Field of Di-rect Current in Heterogeneous Ground[J]. Songklanakarin Journal of Science & Technology, 2007, 29(2):565-573.
[57] Chaladgarn T, Yooyuanyong S. Mathematical Model of Magnetometric Resistivity Sounding for a Conductive Host with a Bulge Overburden[J]. Applied Mathematical Sciences, 2013, 7(7):335-348.
[58] Butler S L, Zhang Z. Forward Modeling of Geoph-ysical Electromagnetic Methods Using Comsol[J]. Computers & Geosciences, 2015, 87:1-10.
[59] Howland-Rose A W, Linford G, Pitcher D H, et al. Some Recent Magnetic Induced-Polarization Developments:Part Ⅱ:Survey Results[J]. Geophysics, 1980, 45(1):55-74.
[60] Szarka L. Geophysical Mapping by Stationary Electric and Magnetic Field Components:A Combination of Potential Gradient Mapping and Magnetometric Resistivity (MMR) Methods[J]. Geophys Prospect, 1987, 35:424-444.
[61] Hishime H, Tsujimoto T M, Humphreys G, et al. MIP Test Survey over the HYC Deposit in Mcarthur River Area, N T[J]. Explor Geophys, 1993, 24:577-584.
[62] Bishop J, Carroll N, Asten M, et al. Finding Spha-lerite at Broken Hill with Drillhole Magnetometric Resistivity[J]. Expl Geophys, 1997, 28:6-10.
[63] Sripanya W. Inverse Problem of Magnetometric Resi-stivity Response from Exponentially Varying Conductive Ground[J]. Adv Studies Theor Phy, 2013, 7(8):367-374.
[64] Sripanya W. Regularized Inverse Problem of Mag-netometric Resistivity Response over a Layered Earth[J]. Adv Studies Theor Phy, 2013, 7(4):183-190.
[65] Labrecque D, Sharpe R, Dan C, et al. Combined Electrical and Magnetic Resistivity Tomography:Synthetic Model Study and Inverse Modeling[J]. Journal of Environmental & Engineering Geophysics, 2003, 8(4):251-262.
[66] Chen J, Oldenburg D W. 3-D Inversion of Magnetic Induced Polarization Data[C]//Aseg Extended Abstracts.[S. l.]:ASEG, 2003(1):245-253.
[67] Li Y, Oldenburg D W. 3D Inversion of Gravity Data[J]. Geophysics, 1998, 63(1):109-119.
[68] Green W R. Inversion of Gravity Profiles by Use of a Backus-Gilbert Approach[J]. Geophysics, 1975, 40(5):763-772.
[69] Last B J, Kubik K. Compact Gravity Inversion[J]. Geophysics, 1983, 48(6):713-721.
[70] Guillen A, Menichetti V. Gravity and Magnetic In-version with Minimization of a Specific Functional[J]. Geophysics, 1984, 49(8):1354-1360.
[71] Bhattacharyya B K. A Generalized Multibody Model for Inversion of Magnetic Anomalies[J]. Geophysics, 1980, 45(2):255-270.
[72] Wang X, Hansen R O. Inversion for Magnetic Ano-malies of Arbitrary Three-Dimensional Bodies[J]. Geophysics, 1990, 55(10):1321-1326.
[73] Zeyen H, Pous J. A New 3-D Inversion Algorithm for Magnetic Total Field Anomalies[J]. Geophysical Journal International, 1991, 104(3):583-591.
[74] Li Y, Oldenburg D W. 3-D Inversion of Magnetic Data[J]. Geophysics, 1996, 61(2):394-408.
[75] Li Y, Oldenburg D W. Joint Inversion of Surface and Three-Component Borehole Magnetic Data[J]. Geophysics, 2000, 65(2):540-552.
[76] Zhdanov M S. Geophysical Inverse Theory and Regu-larization Problems[M]. Amsterdam:Elsevier Academic Press, 2002.
[77] Jakosky J J. Method and Apparatus for Determining Underground Structure:U S, 1906271[P]. 1933-05-02.
[78] Edwards R N. The Magnetometric Resistivity Me-thod and Its Application to the Mapping of a Fault[J]. Can J Earth Sci, 1974, 11:1136-1156.
[79] Edwards R N, Howell E C. A Field Test of the Magnetometric Resistivity (MMR) Method[J]. Geophysics, 1976, 6A(6):1170-1183.
[80] Seigel H O. The Magnetic Induced Polarization (MIP) Method[J]. Geophysics, 1974, 39(3):321-339.
[81] Seigel H O, Howland-Rose. Magnetic Induced-Polarization Method[C]//Fink J B, Sternberg B K, Mcalister E O, et al. In Induced Polarization:Applications and Case Histories. Tulsa:SEG, 1990:23-56.
[82] Hashemi A, Meyers J, Rothery E. Sub-Audio Magnetic Surveying for Shallow Occurrences of Conductive Manganese Ore, Woodie Woodie Area, Western Australia[J]. Exploration Geophysics, 2005, 36(2):170-175.
[83] Meyers J, Cantwell N, Nguyen P, et al. Sub-Audio Magnetic Survey Experiments for High-Resolution, Subsurface Mapping of Regolith and Mineralization at the Songvang Gold Mine Near Agnew, Western Australia[J]. Exploration Geophysics, 2005, 36(2):125-132.
[84] Whitford M, Meyers J, Stolz Ned. The SAM EQM-MR Response of the Regolith at East Victory, St Ives Gold Mine, Western Australia[J]. Exploration Geophysics, 2005, 36(2):133-139.
[85] Wallance Y, Card D, Gates K, et al. Identification of Massive Sulphide Targets Using the Galvanic Source EM (GSEM) Signal from a Sub-Audio Magnetic (SAM) Survey at the Far South Project, Western Australia[C]//24th International Geophysical Conference and Exhibition. Perth:[s. n.], 2015:1-4.
[86] Meju M A. Geoelectromagnetic Exploration for Natu-ral Resources:Models, Case Studies and Challenges[J]. Surveys in Geophysics, 2002, 23(2/3):133-206.
[87] 韩凯,郑智杰,甘伏平,等. 利用多源大功率充电法定位复杂岩溶含水通道的方法[J]. 吉林大学学报(地球科学版),2016,46(5):1501-1510. Han Kai, Zheng Zhijie, Gan Fuping, et al. Determination of Complex Karst Water Channel Using Multi-Source High Power Mise-A-La-Masse Method[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(5):1501-1510.
[88] Street G J. MMR Surveys for the Location of Pa-laeochannels in the Eastern Goldfields, Western Australia[J]. Exploration Geophysics, 1989, 20(2):123-126.
[89] Goldman M, Neubauer F M. Groundwater Exp-loration Using Integrated Geophysical Techniques[J]. Surveysin Geophysics, 1994, 15(3):331-361.
[90] Kulessa B, Jaekel U, Kemna A, et al. Magne-tometric Resistivity (MMR) Imaging of Subsurface Solute Flow:Inversion Framework and Laboratory Tests[J]. Journal of Environmental & Engineering Geophysics, 2002, 7(3):111-118.
[91] Labrecque D J, Yang X J. Difference Inversion of ERT Data:A Fast Inversion Method for 3-D in Situ Monitoring[J]. Journal of Environmental & Engineering Geophysics, 2001, 6(2):316-321.
[92] Kofoed V O. Making Accurate Groundwater Flow Models[J]. Pollution Engineering, 2013, 22:22-26.
[93] Maxwell M, Eso R, Oldenburg D. Using 2D and 3D Electrical Resistivity and Magnetometric Resistivity Techniques for Investigating Dam and Dike Soil Conditions for Leak Detection:Field Examples and Forward Modeling[C]//Symposium on the Application of Geophysics to Engineering and Environmental Problems 2013.[S. l.]:Environment and Engineering Geophysical Society, 2013:821.
[94] Hayley K, Pidlisecky A, Bentley L R. Simultaneous Time-Lapse Electrical Resistivity Inversion[J]. Journal of Applied Geophysics, 2011, 75(2):401-411.
[95] Zhu K, Yang J. Time-Lapse Magnetometric Resis-tivity (MMR) Anomalies of Groundwater Contamination Theoretical Results from Computational Hydro-Geophysical Modeling[C]//Goephysical Solutions for Environment and Engineering:Proceedings of the 2nd International Conference on Environmental and Engineering Geophysics(Volume 1).[S. l.]:Environment and Engineering Geophysical Society, 2006:303-307.
[96] Zhu K, Yang J. Time-Dependent Magnetometric Resistivity Anomalies of Groundwater Contaminatin:Synthetic Results from Computational Hydro-Geophysical Modeling[J]. Applied Geophysics, 2008, 5(4):322-330.
[97] Veitch D, Asten M W, Leeuwen E H V. Electrical and Magnetometric Fields in a Layered Earth Containing Buried Electrodes[J]. Geophysics, 1990, 55(12):1605-1612.
[98] Bishop J, Lewis R, Stolz N. Horses for (Conductive) Courses:DHEM and DHMMR[J]. Exploration Geophysics, 2000, 31(2):192-199.
[99] Meyers J, Cooper M, Bishop J R, et al. Downhole Magnetometric Resistivity Surveying for Refractory Gold Ore at Wiluna Gold Mine[C]//14th ASEG Conf Preview.[S. l.]:ASEG, 2000:79, 84.
[100] Godber K E, Bishop J R. DHMMR:Coming of Age[C]//Exploration in the New Millennium:Proceeding of the Fifth Decennial International Conference on Mineral Exploration. Keystone:AGU-SEG, 2007:1119-1123.
[101] Godber K, Reid J, Duncan A. Looking Left, Right and Centre with DHMMR[C]//ASEG Extended Abstracts. Perth:ASEG, 2007:1-6.
[102] Asten M W. Borehole EM and MMR Methods for Weak Conductors:A Project Review[C]//15th ASEG Extended Abstracts.[S. l.]:ASEG, 2001(1):1-4.
[103] Nabighian M N, Asten M W. Metalliferous Mining Geophysics:State of the Art in the Last Decade of the 20th Century and the Beginning of the New Millennium[J]. Geophysics, 2002, 67(3):964-978.
[104] VallÉE M A, Smith R S, Keating P. Metalliferous Mining Geophysics:State of the Art After a Decade in the New Millennium[J]. Geophysics, 2011, 76(4):W31-W50.
[105] Edwards R N. A Downhole Magnetometric Resis-tivity Technique for Electrical Sounding Beneath a Conductive Surface Layer[J]. Geophysics, 1988, 53(4):528-536.
[106] Asten M W. Field Examples of the Downhole MMR Method and Comparison with the TEM Method[C]//Nabighian M N. Electromagnetic Methods in Applied Geophysics.[S. l.]:Soc Expl Geophys, 1991:99-104.
[107] Labrecque D J, Ward S H. Evaluation of Borehole MMR for Fracture Detection[C]//1987 SEG Annual Meeting. New Orleans:[s. n.], 1987(1):923.
[108] Fielitz D, Kemna A, Vereecken H. Sensitivity Di-stributions in 2D Cross-Hole MMR:A Numerical Study[C]//2009 Symposium on the Application of Geophysics to Engineering and Environmental Problems. Fort Worth:SAGEEP, 2009:739-748.
[109] Fielitz D, Kemna A, Zimmermann E, et al. Model Response Curves and Surveying Aspects of 2D Cross-Hole MMR[C]//2009 Symposium on the Application of Geophysics to Engineering and Environmental Problems. Fort Worth:SAGEEP, 2009:801-808.
[110] Bouchedda A, Giroux B. Synthetic Study of CO2 Monitoring Using Time-Lapse Down-Hole Magnetometric Resistivity at Field Reseach Station, Alberta, Canada[C]//2015 SEG New Orleans Annual Meeting. New Orleans:SEG, 2015:5529-5533.
[111] Tada N, Seama N, Goto T N, et al. 1-D Re-sistivity Structures of the Oceanic Crust Around the Hydrothermal Circulation System in the Central Mariana Trough Using Magnetometric Resistivity Method[J]. Earth Planets & Space, 2005, 57(7):673-677.
[112] Nobes D C, Law L K, Edwards R N. The De-termination of Resistivity and Porosity of the Sediment and Fractured Basalt Layers near the Juan De Fuca Ridge[J]. Geophysical Journal of the Royal Astronomical Society, 1986, 86(2):289-317.
[113] Nobes D C, Law L K, Edwards R N. Results of a Sea-Floor Electromagnetic Survey over a Sedimented Hydrothermal Area on the Juan De Fuca Ridge[J]. Geophysical Journal International, 1992, 110(2):333-346.
[114] Evans R L, Webb S C, Marion J, et al. Hydro-thermal Circulation at the Cleft-Vance Overlapping Spreading Center:Results of a Magnetometric Resistivity Survey[J]. Journal of Geophysical Research Solid Earth, 1998, 103(B6):12321-12338.
[115] Evans R L, Webb S C, Crawford W, et al. Crustal Resistivity Structure at 9°50'N on the East Pacific Rise:Results of an Electromagnetic Survey[J]. Geophysical Research Letters, 2002, 29(6):6-1-6-4.
[116] Edwards R N, Wolfgram P A, Judge A S. The ICE-MOSES Experiment:Mapping Permafrost Zones Electrically Beneath the Beaufort Sea[J]. Marine Geophysical Researches, 1988, 9(9):265-290.
[117] Yang J. Geo-Electrical Responses Associated with Hydrothermal Fluid Circulation in Oceanic Crust:Feasibility of Magnetometric and Electrical Resistivity Methods in Mapping Off-Axis Convection Cells[J]. Exploration Geophysics, 2005, 36(3):281-286.
[118] Baba K. Electrical Structure in Marine Tectonic Settings[J]. Surveys in Geophysics, 2005, 26:701-731.
[119] 傅良魁. 磁激发极化法探矿理论的几个问题[J]. 地球物理学报,1979,22(2):156-168. Fu Liangkui. Several Problems of the Magnetic Induced Polarization (MIP) Method Explorationtheory[J]. Chinese Journal of Geophysics, 1979, 22(2):156-168.
[120] 励宝恒,王式铭. 磁激发极化法[J]. 物探与化探,1979,3(4):68-73. Li Baoheng, Wang Shiming. Magnetic Induced Polarization (MIP) Method[J]. Geophysical and Geochemical Exploration, 1979, 3(4):68-73.
[121] 傅良魁. 磁激发极化法中水平圆柱体的一些研究结果[J]. 地球物理学报,1980,23(2):197-206. Fu Liangkui. Some Results of Research of the Horizontal Cylinder in the Magnetic Induced Polarization Method[J]. Chinese Journal of Geophysics, 1980, 23(2):197-206.
[122] 崔焕敏,王刚,焦宗润. 磁电阻率法与磁激发极化法[J]. 放射性地质,1983,1(4):45-54. Cui Huanmin, Wang Gang, Jiao Zongrun. Magnetometric Resistivity (MMR) Method and Magnetic Induced Polarization (MIP) Method[J]. Radioaction Geology, 1983, 1(4):45-54.
[123] 张书成. 磁电阻率法的地质效果[J]. 地质与勘探,1987,23(6):45-50. Zhang Shucheng. Geological Results Achieved by Magnetic Resistivity Surveys[J]. Geology and Prospecting, 1987, 23(6):45-50.
[124] 杨建文. 起伏地形点电源地下传导电流磁场表达式:磁电阻率法地形改正[J]. 桂林冶金地质学院学报,1991,11(1):77-87. Yang Jianwen. The Expressions for Magnetic Fields Associated with the Non-Inductive Current of Point Source in Arbitrarily Undulatory Topography-Topographic Correction of the Magnetometric Resistivity Method[J]. Journal of Guilin College of Geology, 1991, 11(1):77-87.
[125] 杨建文,任怀宗. 二度地形的磁电阻率异常计算方法的研究[J]. 中南矿冶学院学报,1991,22(3):223-231. Yang Jianwen, Ren Huaizong. Calculation Method of Magnetometric Resistivity (MMR) Anomalies for 2-D Topographies[J]. Journal of Central South Institute Mining and Metallurgy, 1991, 22(3):223-231.
[126] 杨建文,任怀宗,雷林源. 起伏地形条件下磁电阻率法的资料处理方法[J]. 中南矿冶学院学报,1991,22(1):1-8. Yang Jianwen, Ren Huaizong, Lei Linyuan. Topographic Correction of Magnetometric Resistivity Method[J]. Journal of Central South Institute Mining and Metallurgy, 1991, 22(1):1-8.
[127] 翁爱华,刘云鹤,高丽娟,等. 天然气水合物的磁电阻率响应特征[J]. 石油地球物理勘探,2009,44(增刊1):158-161. Weng Aihua, Liu Yunhe, Gao Lijuan, et al. Magnetoelectric Resistivity Reponse Characteristics for Natural Gas Hydrate[J]. Oil Geophysical Prospecting, 2009, 44(Sup. 1):158-161.
[128] 林品荣,郭鹏,石福升,等. 大深度多功能电磁探测技术研究[J]. 地球学报,2010,31(2):149-154. Lin Pinrong, Guo Peng, Shi Fusheng, et al. A Study of the Techniques for Large-Depth and Multi-Functional Electromagnetic Survey[J]. Acta Geoscientica Sinica, 2010, 31(2):149-154.
[129] 林品荣,郑采君,石福升,等. 电磁法综合探测系统研究[J]. 地质学报,2006,80(10):1539-1548. Lin Pinrong, Zheng Caijun, Shi Fusheng, et al. The Research of Integrated Electromagnetic Method System[J]. Acta Geologica Sinica, 2006, 80(10):1539-1548.
[130] Li J, Lin P, Shi F, et al. Study on Magnetic Induced Polarization Technology and Instruments[J]. Applied Mechanics and Materials, 2013, 336-338:100-105.
[131] 王猛,张汉泉,伍忠良,等. 勘查天然气水合物资源的海洋可控源电磁发射系统[J]. 地球物理学报,2013,56(11):3708-3717. Wang Meng, Zhang Hanquan, Wu Zhongliang, et al. Marine Controlled Source Electromagnetic Launch System for Natural Gas Hydrate Resource Exploration[J]. Chinese Journal of Geophysics, 2013, 56(11):3708-3717.
[1] 李建平,李桐林,张 辉,徐凯军. 不规则回线源层状介质瞬变电磁场正反演研究及应用[J]. J4, 2005, 35(06): 790-0795.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!