吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (6): 1855-1864.doi: 10.13278/j.cnki.jjuese.201706302

• 地球探测与信息技术 • 上一篇    下一篇

Shearlet变换在GPR数据随机噪声压制中的应用

王宪楠, 刘四新, 程浩   

  1. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2017-03-26 出版日期:2017-11-26 发布日期:2017-11-26
  • 通讯作者: 刘四新(1966),男,教授,博士生导师,博士,主要从事探地雷达、钻孔雷达及电磁波测井等方法理论和应用研究,E-mail:liusixin@jlu.edu.cn E-mail:liusixin@jlu.edu.cn
  • 作者简介:王宪楠(1987),女,博士研究生,主要从事探地雷达、钻孔雷达数据处理研究,E-mail:747031484@qq.com
  • 基金资助:
    国家自然科学基金项目(41076076);国家高技术研究发展计划("863"计划)项目(2013AA064603);吉林大学研究生创新基金资助项目(2016201)

Application of Shearlet Transform for Suppressing Random Noise in GPR Data

Wang Xiannan, Liu Sixin, Cheng Hao   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2017-03-26 Online:2017-11-26 Published:2017-11-26
  • Supported by:
    Supported by the Natural Science Foundation of China (41076076), the National High-Tech R&D of China (2013AA064603) and the Graduate Innovation Fund of Jilin University (2016201)

摘要: 随机噪声是探地雷达(ground penetrating radar,GPR)数据处理存在的主要问题之一,直接影响到GPR数据后续处理及最终解释的准确性和可靠性。为了有效地去除随机噪声,同时更好地保留GPR信号的有效信息,本文提出基于Shearlet变换的GPR数据随机噪声去除方法。作为一种非自适应多尺度、多方向性的几何分析方法,Shearlet变换能够近乎最优地表示含奇异点的高维曲线。在Shearlet域,GPR数据能够得到更加稀疏的表示,通过阈值去噪的方法,有效地去除了随机噪声,使信噪比提高了4 dB,最大程度地保留了GPR有效信号。利用理论和实际数据进行验证,体现了Shearlet变换阈值去噪方法的有效性和准确性。

关键词: Shearlet变换, 探地雷达, 随机噪声, 硬阈值

Abstract: Random noise is one of the serious problems encountered during the GPR data processing. It directly influences the accuracy and reliability of the processing results. In order to remove the random noise effectively and retain the useful information, the authors propose a random noise suppression method in GPR data by using Shearlet transform. As a non-adaptive geometric-analysis method with multi-directions and multi-scales, Shearlet transform can be used to approximately represent the high-dimensional curves with singular points. In Shearlet domain, GPR data appear more sparsely. Through the threshold de-noising method, random noises can be suppressed effectively; so that the signal to noise ratio (SNR) is improved by 4 dB, and the useful information is retained to the maximum extent. The effectivity and accuracy of the Shearlet-transform threshold de-noising method are validated by the theoretical and practical data.

Key words: Shearlet transform, ground penetrating radar, random noise, hard threshold

中图分类号: 

  • P631.4
[1] 曾照发,刘四新,王者江,等. 探地雷达方法原理及应用[M]. 北京:科学出版社,2006. Zeng Zhaofa, Liu Sixin, Wang Zhejiang, et al. Ground Penetrating Radar:Principle and Application[M]. Beijing:Science Press, 2006.
[2] 邹海林,宁书年,邹华胜. 采用不同预处理方法的GPR图像去噪效果分析[J]. 地球物理学进展,2005,20(2):469-475. Zou Hailin, Ning Shunian, Zou Huasheng. Perfoemance Analysis of GPR Image De-Noising Based on Different Pre-Processing Methods[J]. Progress in Geophysics, 2005, 20(2):469-475.
[3] Baili J, Lahouar S, Hergli M, et al. GPR Singal De-Noising by Discrete Wavelet Transform[J]. NDT&E International, 2009,42:696-703.
[4] Jeng Y, Li Y W, Chen C S, et al. Adaptive Filtering of Random Noise in Near-Surface Seismic and Ground Penetrating Radar Data[J]. Journal of Applied Geophysics, 2009, 68:36-46.
[5] 康冶,于承业,贾卧,等. f-x域去噪方法研究[J]. 石油地球物理勘探,2003,38(2):136-138. Kang Ye, Yu Chengye, Jia Wo, et al.f-x Domain De-Noising Research[J]. Oil Geophysical Prospecting, 2003, 38(2):136-138.
[6] Russel B, Hampson S, Chun J. Noise Elimination and the Radon Transform:Part 1[J]. The Leading Edge, 1990, 11(9):31-37.
[7] 张军华,陆基孟. 小波变换方法在地震资料中去噪和提高分辨率中的应用[J]. 石油大学学报(自然科学版),1997,21(1):18-21. Zhang Junhua, Lu Jimeng. Application of Wavelet Transform in Removing Noise and Improving Resolution of Seismic Data[J]. Journal of University of Petroleum (Edition of Natural Science), 1997,21(1):18-21.
[8] Mckemma J, Boyd G D, Thurston R N. Plate Theory Solution for Guided Flexural Acoustic Waves Along the Tip of a Wedge[J]. IEEE Transactions on Sonics and Ultrasonics, 1974, 21(3):178-186.
[9] Mckemma J, Mckenna J. Flexural Acoustic Waves Along the Edge of a Plate[J]. IEEE Transactions on Sonics and Ultrasonics, 1974, 21(4):296-297.
[10] 段志强. 梳状波在频谱分析仪中的应用研究[J]. 电子质量,2010,12:47-56. Duan Zhiqiang. Research on Application of the Comb Wave in the Spectrum Analyzer[J]. Assessmnet and Application, 2010, 12:47-56.
[11] 杨明,尹勇,彭玉华,等. Beamlet变换与多尺度线特征提取[J]. 电子学报,2007, 35(1):100-103. Yang Ming, Yin Yong, Peng Yuhua, et al. Beamlet Transform and Multiscale Linear Feature Extraction[J]. Acta Electronica Sinica, 2007, 35(1):100-103.
[12] 杨晓慧,焦李成,李伟. 基于第二代bandelets的图像去噪[J]. 电子学报,2006, 34(11):2063-2067. Yang Xiaohui, Jiao Licheng, Li Wei. Second Generation Bandelets Based Image Denoising[J]. Acta Electronica Sinica, 2006, 34(11):2063-2067.
[13] 包乾宗,高静怀,陈文超. 面波压制的Ridgelet域方法[J].地球物理学报,2007, 50(4):1210-1215. Bao Qianzong, Gao Jinghuai, Chen Wenchao. Ridgelet Domain Method of Ground-Roll Suppression[J]. Chinese Journal of Geophysics, 2007, 50(4):1210-1215.
[14] Do M N, Vetterli M. The Contourlet Transform:An Efficient Directional Multiresolution Image Representation[J]. IEEE Trans Image Process, 2005, 14:2091-2106.
[15] 仝中飞,王德利,刘冰. 基于Curvelet变换阈值法的地震数据去噪方法[J]. 吉林大学学报(地球科学版),2008, 38(增刊1):48-52. Tong Zhongfei, Wang Deli, Liu Bing. Seismic Data Denoise Based on Curvelet Transform with the Threshold Method[J]. Hournal of Jilin University (Earth Science Edition), 2008, 38(Sup.1):48-52.
[16] 王德利,仝中飞,唐晨,等. Curvelet阈值迭代法地震随机噪声压制[J]. 应用地球物理,2010,7(4):315-324. Wang Deli, Tong Zhongfei,Tang Chen, et al. An Iterative Curvelet Thresholding Algorithm for Seismic Random Noise Attenuation[J]. Applied Geophysics, 2010,7(4):315-324.
[17] 孟阁阁,王德利,陈鑫. 基于三维曲波变换的地震数据去噪方法研究[J]. 石油物探,2014,53(3):314-323. Meng Gege, Wang Deli, Chen Xin. Study on Seismic Data Denoising Method Based on 3D Curvelet Transform[J]. Geophysical Prospecting Forpetroleum, 2014,53(3):314-323.
[18] Guo K, Labate D, Lim W, et al. Wavelets with Composite Dilations and Their MRA Properties[J]. Appl Comput Harmon Anal, 2006, 20:202-236.
[19] Guo K, Labate D, Lim W, et al. The Theory of Wavelets with Composite Dilations[J]. Harmonic Analysis and Applications, 2006, 78:231-250.
[20] Guo K, Labate D, Lim W, et al, Wavelets with Composite Dilations[J]. Electron Res Announc Amer Math Soc, 2004, 10:78-87.
[21] 王德营,李振春,黄建平,等. 一种分尺度的面波压制方法[J]. 石油学报,2014,35(2):303-309. Wang Deying, Li Zhenchun, Huang Jianping, et al. A Surface Wave Suppression Method Based on Scale-Partition[J]. Acta Petrolei Sinica, 2014, 35(2):303-309.
[22] Easley G, Labate D, Lim W Q. Sparse Directional Image Representations Using the Discrete Shearlet Transform[J]. Applied and Computational Harmonic Analysis, 2008, 25(1):25-46.
[23] Yi S, Labate D, Easley G R, et al. A Shearlet App-roach to Edge Analysis and Detection[J]. IEEE Transcations on Image Processing, 2009, 18(5):929-941.
[24] 魏扬,那彦,邓昆明. 基于多尺度几何分析的医学图像融合[J]. 电子科技,2014,27(8):19-21. Wei Yang, Na Yan, Deng Kunming. Medical Image Fusion Based on Multiscale Geometric Analysis[J]. Electronic Science and Technology, 2014, 27(8):19-21.
[25] 朱华生,徐晨光. Shearlet变换域自适应图像去噪算法[J].激光与红外,2012, 42(7):811-814. Zhu Huasheng, Xu Chenguang. Adaptive Image Denoising Algorithm Based on Shearlet Transform[J]. Laser & Infrared, 2012,42(7):811-814.
[26] 胡海智,孙辉,邓承志,等,基于Shearlet变换的图像去噪算法[J]. 计算机应用,2010(6):1562-1564. Hu Haizhi, Sun Hui, Deng Chengzhi, et al. Image De-Noising Algorithm Based on Shearlet Transform[J]. Journal of Computer Applications, 2010(6):1562-1564.
[27] 刘成明,王德利,王通,等. 基于Shearlet变换的地震随机噪声压制[J].石油学报,2014, 35(4):692-699. Liu Chengming, Wang Deli, Wang Tong, et al. Random Seismic Noise Attenuation Based on the Shearlet Transform[J]. Actc Petrolei Sinica, 2014, 35(4):692-699.
[28] 刘成明,王德利,胡斌,等. Shearlet域稀疏约束地震数据重建[J]. 吉林大学学报(地球科学版),2016, 46(6):1855-1864. Liu Chengming, Wang Deli, Hu Bin, et al. Seismic Data Interpolation Based on Sparse Constraint in Shearlet Domain[J]. Journal of Jilin Universityv(Earth Science Edition),2016, 46(6):1855-1864.
[29] Kittipoom P, Kutyniok G, Wang Q L. Construction of Compactly Supported Shearlet Fremes[J], Constructive Approximation, 2012, 35(1):21-27.
[1] 梁文婧, 冯晅, 刘财, 恩和得力海, 张明贺, 梁帅帅. 多输入多输出极化步进频率探地雷达硬件系统开发[J]. 吉林大学学报(地球科学版), 2018, 48(2): 483-490.
[2] 冯晅, 梁帅帅, 恩和得力海, 张明贺, 董泽君, 周皓秋, 齐嘉慧, 赵玮昌. 全极化探地雷达地下管道分类识别技术[J]. 吉林大学学报(地球科学版), 2018, 48(2): 364-372.
[3] 王文天, 刘四新, 鹿琪, 李宏卿, 傅磊. 基于改进残差法的定向钻孔雷达三维成像算法[J]. 吉林大学学报(地球科学版), 2018, 48(2): 402-410.
[4] 曾昭发, 李文奔, 习建军, 黄玲, 王者江. 基于DOA估计的阵列式探地雷达逆向投影目标成像方法[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1308-1318.
[5] 习建军, 曾昭发, 黄玲, 崔丹丹, 王者江. 阵列式探地雷达信号极化场特征[J]. 吉林大学学报(地球科学版), 2017, 47(2): 633-644.
[6] 刘成明, 王德利, 胡斌, 王通. Shearlet域稀疏约束地震数据重建[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1855-1864.
[7] 刘霞, 黄阳, 黄敬, 段志伟. 基于经验模态分解(EMD)的小波熵阈值地震信号去噪[J]. 吉林大学学报(地球科学版), 2016, 46(1): 262-269.
[8] 孟庆生, 韩凯, 刘涛, 高镇. 软土基坑隔水帷幕渗漏检测技术[J]. 吉林大学学报(地球科学版), 2016, 46(1): 295-302.
[9] 董烈乾, 李振春, 刘磊, 李志娜, 桑运云. 基于经验模态分解的曲波阈值去噪方法[J]. J4, 2012, 42(3): 838-844.
[10] 张丽丽, 刘四新, 吴俊军, 贾亮, 康晓涛. 基于分数阶傅里叶变换的探地雷达子波提取算法[J]. J4, 2012, 42(2): 569-574.
[11] 林红波, 李月, 徐学纯, 马海涛. 减小离散误差的时频峰值滤波算法[J]. J4, 2011, 41(2): 572-578.
[12] 聂鹏飞, 曾谦, 马海涛, 李月, 林红波. 消减地震勘探随机噪声:导数算子约束下的维纳滤波[J]. J4, 2010, 40(6): 1471-1478.
[13] 巩向博,韩立国,王恩利,杜立志. 压制噪声的高分辨率Radon变换法[J]. J4, 2009, 39(1): 152-0157.
[14] 董航,刘四新,王春晖,曾昭发,鹿琪,王者江,易兵. 探地雷达测量近地表含水量的研究[J]. J4, 2009, 39(1): 163-0167.
[15] 薛建,贾建秀,黄航,易兵,张良怀,张羽. 应用探地雷达探测活动断层[J]. J4, 2008, 38(2): 347-0350.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!