吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (1): 118-131.doi: 10.13278/j.cnki.jjuese.20170160

• 地质与资源 • 上一篇    下一篇

佳木斯地块北部早古生代沉积建造的时代与物源:来自岩浆和碎屑锆石U-Pb年龄及Hf同位素的制约

乔健, 栾金鹏, 许文良, 王志伟, 赵硕, 郭鹏   

  1. 吉林大学地球科学学院, 长春 130061
  • 收稿日期:2017-02-07 出版日期:2018-01-26 发布日期:2018-01-26
  • 通讯作者: 栾金鹏(1990),男,硕士研究生,主要从事火成岩岩石学和岩石圈动力学方面的研究,E-mail:jinpengluan@163.com E-mail:jinpengluan@163.com
  • 作者简介:乔健(1987),男,硕士研究生,主要从事火成岩岩石学方面的研究,E-mail:248295108@qq.com
  • 基金资助:
    国家自然科学基金项目(41330206,41672050)

Age and Provenance of Early Paleozoic Sedimentary Formation in Northern Jiamusi Massif: Evidence from U-Pb Ages and Hf Isotope Compositions of Detrital and Magmatic Zircons

Qiao Jian, Luan Jinpeng, Xu Wenliang, Wang Zhiwei, Zhao Shuo, Guo Peng   

  1. College of Earth Sciences, Jilin University, Changchun 130061, China
  • Received:2017-02-07 Online:2018-01-26 Published:2018-01-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41330206,41672050)

摘要: 本文对出露于佳木斯地块北部金银库组变沉积岩和侵入其中的火成岩脉体中的锆石进行了系统的LA-ICP-MS/SIMS U-Pb定年和Hf同位素研究,旨在限定金银库组的沉积时限,并揭示其物源及沉积环境。3个样品中锆石呈自形-半自形,显示典型的岩浆生长环带或条痕状吸收,暗示其岩浆成因。研究结果显示:采自金银库组绢云母片岩中的碎屑锆石72个分析点给出1 955~457 Ma的年龄区间,主要峰期年龄为814、757、568、491和463 Ma,其εHft)值为-13.9~-0.1,Hf同位素一阶段模式年龄TDM1和二阶段模式年龄TDM2分别为1 827~1 307 Ma和2 411~1 715 Ma。采自侵入金银库组的花岗细晶岩和辉绿岩分别给出了263和267 Ma的结晶年龄,前者的εHft)值为0.9~2.0,Hf同位素二阶段模式年龄TDM2为1 110~1 047 Ma;后者的εHft)值为-7.7~6.4,Hf同位素一阶段模式年龄TDM1为1 206~662 Ma。结合佳木斯地块及邻区约430 Ma火成岩的存在和金银库组中该期碎屑锆石的缺乏以及碎屑锆石年龄众数及其Hf同位素组成,我们认为金银库组的形成时代应为晚奥陶世至早志留世(463~430 Ma),形成于被动大陆边缘背景,沉积物源主要来自佳木斯地块及其邻区的古元古代和早古生代早期火成岩。

关键词: 佳木斯地块, 金银库组, 沉积时限, 物源, 碎屑锆石, Hf同位素

Abstract: In this paper, we present the LA-ICP-MS/SIMS U-Pb ages and Hf isotope compositions of detrital zircons from the metasedimentary rocks and intrusive rocks within the Jinyinku Formation in the northern Jiamusi massif to constrain the depositional ages and provenance of the strata. All the zircons separated from our three samples are euhedral-subhedral in shape,and display striped absorption and/or oscillatory growth zoning patterns in CL images, implying their magmatic origin. The dating results indicate that the 72 analytical spots of zircons from a sericite schist yield ages between 1 955 Ma and 457 Ma that can be subdivided into five age populations with peaks at 814, 757, 568, 491, and 463 Ma. Their εHf (t) values and two-stage model ages (TDM2) range from -13.9 to -0.1 and from 2 411 to 1 715 Ma, respectively. The zircons from aplite and diabase that intruded in the Jinyinku Formation yield weighted mean ages of 263 Ma and 267 Ma, respectively. Additionally, the former has the εHf (t) values of 0.9-2.0 and TDM2 ages of 1 110-1 047 Ma;whereas the latter has the εHf (t) values of -7.7-6.4 and TDM1 ages of 1 206-662 Ma. In consideration with the occurrence of the granitoids with the ages of~430 Ma within the Jiamusi massif, zircon age populations, and Hf isotopic compositions, we conclude that the Jinyinku Formation formed between 463 Ma and 430 Ma (i.e., Late Ordovician to Early Silurian) in a passive continental margin setting,and sourced mainly from Neoproterozoic and Early Paleozoic terrane in the Jiamusi massif and adjacent regions.

Key words: Jiamusi massif, Jinyinku Formation, depositional age, provenance, detrital zircon, Hf isotope

中图分类号: 

  • P597.3
[1] Li J Y. Permian Geodynamic Setting of Northeast China and Adjacent Regions: Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26(3/4): 207-224.
[2] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic Granitoids in Northeastern China[J]. Journal of Asian Earth Sciences, 2011, 41(1): 1-30.
[3] Xu W L, Pei F P, Wang F, et al. Spatial-Temporal Relationships of Mesozoic Volcanic Rocks in NE China: Constraints on Tectonic Overprinting and Transformations Between Multiple Tectonic Systems[J]. Journal of Asian Earth Sciences,2013, 74: 167-193.
[4] 许文良, 王枫, 裴福萍,等. 中国东北中生代构造体制与区域成矿背景:来自中生代火山岩石组合时空变化的制约[J]. 岩石学报, 2013, 29(2): 339-353. Xu Wenliang, Wang Feng, Pei Fuping, et al. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China: Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations[J]. Acta Petrologica Sinica, 2013, 29(2): 339-353.
[5] Zhou J B, Wilde S A, Zhang X Z, et al. The Onset of Pacific Margin Accretion in NE China: Evidence from the Heilongjiang High-Pressure Metamorphic Belt[J]. Tectonophysics, 2009, 478: 230-246.
[6] 孟恩, 许文良, 杨德彬, 等. 满洲里地区灵泉盆地中生代火山岩的锆石U-Pb年代学、地球化学及其地质意义[J]. 岩石学报, 2011, 27(4): 1209-1226. Meng En, Xu Wenliang, Yang Debin, et al. Zircon U-Pb Chronology, Geochemistry of Mesozoic Volcanic Rocks from the Lingquan Basin in Manzhouli Area, and Its Tectonic Implications[J]. Acta Petrologica Sinica, 2011, 27(4): 1209-1226.
[7] 王枫, 许文良,葛文春,等. 敦化-密山断裂带的平移距离:来自松嫩-张广才岭-佳木斯-兴凯地块古生代-中生代岩浆作用的制约[J]. 岩石学报, 2016, 32(4): 1129-1140. Wang Feng, Xu Wenliang, Ge Wenchun, et al. The Offset Distance of the Dun-Mi Fault: Constrains from Palezoic-Mesozoic Magmatism with in the Songnen-Zhangguangcai Range, Jiamusi and Khanka Massifs[J]. Acta Petrologica Sinica, 2016, 32(4): 1129-1140.
[8] 黑龙江省地质矿产局. 黑龙江省区域地质志[M]. 北京: 地质出版社, 1993. Heilongjiang Bureau of Geology and Mineral Resources. Regional Geology of Heilongjiang Province[M]. Beijing: Geological Publishing House, 1993.
[9] Meng E, Xu W L, Pei F P, et al. Detrital-Zircon Geochronology of Late Paleozoic Sedimentary Rocks in Eastern Heilongjiang Province, NE China: Implications for the Tectonic Evolution of the Eastern Segment of the Central Asian Orogenic Belt[J]. Tectonophysics, 2010, 485: 42-51.
[10] Sengör A M C, Natal'in B A, Burtman V S. Evolution of the Altaid Tectonic Collage and Paleozoic Crustal Growth in Eurasia[J]. Nature, 1993, 364: 299-307.
[11] Jahn B M. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic[J]. Geological Society of London, 2004, 226: 73-100.
[12] 李宇, 丁磊磊, 许文良, 等. 孙吴地区中侏罗世白云母花岗岩的年代学与地球化学: 对蒙古-鄂霍茨克洋闭合时间的限定[J]. 岩石学报, 2015, 31(1): 56-66. Li Yu, Ding Leilei, Xu Wenliang, et al. Geochronology and Geochemistry of Muscovite Granite in Sunwu Area, NE China: Implications for the Timing of Closure of the Mongol-Okhotsk Ocean[J]. Acta Petrologica Sinica, 2015, 31(1): 56-66.
[13] 许文良, 孙德有, 周燕. 满洲里-绥芬河地学断面岩浆作用和地壳结构[M]. 北京: 地质出版社, 1994. Xu Wenliang, Sun Deyou, Zhou Yan. Magmatism and Crutal Structure of Manzhouli-Suifenhe Geological Fault[M]. Geological Publishing House, Beijing, 1994.
[14] Wilde S A, Dorsett-Bain H L, Liu J L. The Iden-tification of a Late Pan-African Granulite Facies Event in Northeast China: SHRIMP U-Pb Zircon Dating of the Mashan Group at Liumao, Heilongjiang Province, China[C]//Proceedings of the 30th IGC: Precambrian Geology Metamorphic Petrology. Amsterdam: VSP International Science Publishers, 1997: 59-74.
[15] Wilde S A, Wu F Y, Zhang X Z. Late Pan-African Magmatism in Northeastern China: SHRIMP U-Pb Zircon Evidence from Granitoids in the Jiamusi Massif[J]. Precambrian Research, 2003, 122: 311-327.
[16] 吴福元, 孙德有, 林强. 东北地区显生宙花岗岩的成因与地壳增生[J]. 岩石学报, 1999, 15(2): 181-189. Wu Fuyuan, Sun Deyou, Lin Qiang. Petrogenesis of the Phanerozoic Granites and Crustal Growth in the Northeast China[J]. Acta Petrologica Sinica, 1999, 15(2): 181-189.
[17] 吴福元, Wilde S A, 孙德有. 佳木斯地块片麻状花岗岩的锆石离子探针U-Pb年龄[J]. 岩石学报, 2001, 17(3): 443-452. Wu Fuyuan, Wilde S A, Sun Deyou. The La-ICP-MS U-Pb Ages of Granitic Gneisses in the Jiamusi Massif[J]. Acta Petrologica Sinica, 2001, 17(3): 443-452.
[18] Luan J P, Wang F, Xu W L, et al. Provenance, Age, and Tectonic Implications of Neoproterozoic Strata in the Jiamusi Massif: Evidence from U-Pb Ages and Hf Isotope Compositions of Detrital and Magmatic Zircons[J]. Precambrian Research, 2017, 297: 19-32.
[19] Bi J H, Ge W C, Yang H, et al. Petrogenesis and Tectonic Implications of Early Paleozoic Granitic Magmatism in the Jiamusi Massif, NE China: Geochronological, Geochemical and Hf Isotopic Evidence[J]. Journal of Asian Earth Sciences, 2014, 96: 308-331.
[20] Wilde S A, Zhang X Z, Wu F Y. Extension of a Newly Identified 500 Ma Metamorphic Terrane in North East China: Further U-Pb SHRIMP Dating of the Mashan Complex, Heilongjiang Province, China[J]. Tectonophysics, 2000, 328: 115-130.
[21] Wang F, Xu W L, Xu Y G, et al. Late Triassic Bimodal Igneous Rocks in the Eastern Heilongjiang Province, NE China:Implications for the Initation of Subduction of the Paleo-Pacific Plate Beneath Eurasia[J]. Journal of Asian Earth Sciences, 2015, 97: 406-423.
[22] Liu Y S, Hu Z C, Gao S, et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard[J]. Chemical Geology, 2008, 257: 34-43.
[23] Liu Y S, Gao S, Hu Z C, et al. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths[J]. Journal of Petrology, 2010, 51: 537-571.
[24] Ludwig K R. ISOPLOT 3: A Geochronological Too-lkit for Microsoft Excel[M]. California: Berkeley Geochronology Centre Special Publication, 2003: 1-74.
[25] Andersen T. Correction of Common Lead in U-Pb Analyses that Do not Report 204Pb[J]. Chemical Geology, 2002, 192(1/2): 59-79.
[26] Hu Z C, Liu Y S, Gao S, et al. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis[J]. Spectrochimica Acta: Part B: Atomic Spectroscopy, 2012, 78: 50-57.
[27] Koschek G. Origin and Significance of the SEM Cathodoluminescence from Zircon[J]. Journal of Microscopy, 1993, 171: 223-232.
[28] Belousova E A, Griffin W L, O'Reilly S Y, et al. Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type[J]. Contributions to Mineralogy and Petrology, 2002, 143: 602-622.
[29] Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of Zircon Textures[J]. Reviews in Mineralogy and Geochemistry, 2003, 53: 469-500.
[30] Rubatto D. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link Between U-Pb Ages and Metamorphism[J]. Chemical Geology, 2002, 184: 123-138.
[31] Bi J H, Ge W C, Yang H, et al. Geochronological and Geochemical of Late Carboniferous-Middle Permian I- and A-Type Granites and Gabbro-Diorites in the Eastern Jiamusi Massif, NE China: Implications for Petrogenesis and Tectonic Setting[J]. Lithos, 2016, 266/267: 213-232.
[32] 高福红,王枫,曹花花,等. 三江盆地绥滨断陷基底花岗岩的锆石U-Pb年代学及其构造意义[J]. 吉林大学学报(地球科学版),2010, 40(4): 955-960. Gao Fuhong, Wang Feng, Cao Huahua, et al. Zircon U-Pb Age of the Basement Granite from Suibin Depression in Sanjiang Basin and Its Tectonic Implications[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(4): 955-960.
[33] Wang F, Xu W L, Meng E, et al. Early Paleozoic Amalgamation of the Songnen-Zhangguangcai Range and Jiamusi Massifs in the Eastern Segment of the Central Asian Orogenic Belt: Geochronological and Geochemical Evidence from Granitoids and Rhyolites[J]. Journal of Asian Earth Sciences, 2012, 49: 234-248.
[34] Buchko I V, Sorokin A A, Kudryashov N M. Age and Tectonic Position of the Early Paleozoic Malyi Khingan Terrane in the Eastern Part of the Central Asian Fold Belt[J]. Doklady Earth Sciences, 2012, 445(2): 929-933.
[35] Lee J, Williams I, Ellis D. Pb, U and Th Diffusion in Natural Zircon[J]. Nature, 1997, 390: 159-163.
[36] Cherniak D J,Watson E B.Pb Diffusion in Zircon[J].Chemical Geology, 2001, 172(1/2): 5-24.
[37] Wang Z W, Xu W L, Pei F P, et al. Geochronology and Geochemistry of Early Paleozoic Igneous Rocks of the Lesser Xing'an Range, NE China: Implications for the Tectonic Evolution of the Eastern Central Asian Orogenic Belt[J]. Lithos, 2016, 261(1): 144-163.
[38] Khanchuk A I, Berdnikov N V, Cherepanov A A, et al. First Finds of Platinoids in Black-Shale Sequences of the Bureya Massif[J]. Doklady Earth Sciences, 2009, 425(5): 213-215.
[39] 王少轶,刘宝山. 伊春东风经营所新元古代花岗质片麻岩U-Pb年代学和地球化学特征[J].世界地质,2014,33(4): 780-786. Wang Shaoyi, Liu Baoshan. Characteristics of U-Pb Chronology and Geochemistry of Neoproterozoic Granitic Gneiss in Dongfengjingyingsuo of Yichun Area[J]. Global Geology, 2014,33(4): 780-786.
[40] Luan J P, Xu W L, Wang F, et al. Age and Geo-chemistry of Neoproterozoic Granitoids in the Songnen-Zhangguangcai Range Massif, NE China: Petrogenesis and Tectonic Implications[J]. Journal of Asian Earth Sciences, 2017, 148: 265-276.
[41] Yang H, Ge W C, Zhao G C, et al. Zircon U-Pb Ages and Geochemistry of Newly Discovered Neoproterozoic Orthogneisses in the Mishan Region, NE China: Constraints on the High-Grade Metamorphism and Tectonic Affinity of the Jiamusi-Khanka Block[J]. Lithos, 2017, 268/269/270/271: 16-31.
[42] Sorokin A A, Kudryashov N M. The First Geochro-nological Evidence of Late Proterozoic Granitoid Magmatism in the Bureya Terrane[J]. Doklady Earth Sciences, 2012, 447(5): 541-545.
[43] Sorokin A A, Kotovb A B, Sal'nikova E B, et al. Early Paleozoic Granitoids in the Lesser Khingan Terrane, Central Asian Foldbelt: Age, Geochemistry and Geodynamic Interpretations[J]. Petrology, 2011, 19: 632-648.
[44] 牛新生,王成善. 异地碳酸盐岩块体与碳酸盐岩重力流沉积研究及展望[J].古地理学报,2010, 12(1): 17-30. Niu Xinsheng, Wang Chengshan. Problems and Perspect in Studies of Allochthonous Carbonate Blocks and Carbonate Gravity Flow Desposits[J]. Journal of Paleogeography, 2010, 12(1): 17-30.
[1] 张强, 丁清峰, 宋凯, 程龙. 东昆仑洪水河铁矿区狼牙山组千枚岩碎屑锆石U-Pb年龄、Hf同位素及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1085-1104.
[2] 马宇鹏, 任云生, 郝宇杰, 赖科, 赵华雷, 刘军. 黑龙江省羊鼻山铁钨矿床中钨矿成因及物质来源[J]. 吉林大学学报(地球科学版), 2018, 48(1): 105-117.
[3] 孙凡婷, 刘晨, 邱殿明, 鲁倩, 贺云鹏, 张铭杰. 大兴安岭东坡小奎勒河中基性侵入岩成因及地球动力学意义:锆石U-Pb年代学、元素和Hf同位素地球化学证据[J]. 吉林大学学报(地球科学版), 2018, 48(1): 145-164.
[4] 杨凤超, 宋运红, 赵玉岩. 辽宁盘岭矿集区花岗岩锆石SHRIMP U-Pb年龄、Hf同位素组成及地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1429-1441.
[5] 张立敏, 王岳军, 张玉芝, 刘汇川, 张新昌. 海南岛北部古生界时代:碎屑锆石U-Pb年代学约束[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1187-1206.
[6] 刘晨, 孙景贵, 邱殿明, 古阿雷, 韩吉龙, 孙凡婷, 杨梅, 冯洋洋. 大兴安岭北段东坡小莫尔可地区中生代火山岩成因及其地质意义:元素、Hf同位素地球化学与锆石U-Pb同位素定年[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1138-1158.
[7] 李福来, 肖飞, 孟凡超, 任泽樱. 内蒙古索伦地区上二叠统林西组碎屑岩地球化学特征及其对物源的指示意义[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1769-1780.
[8] 孔华, 许明珠, 张强, 唐宇蔷, 赵佳进. 湘南道县辉长岩包体的锆石LA-ICP-MS定年、Hf同位组成及其地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(3): 627-638.
[9] 严威, 邱殿明, 丁清峰, 刘飞. 东昆仑五龙沟地区猴头沟二长花岗岩年龄、成因、源区及其构造意义[J]. 吉林大学学报(地球科学版), 2016, 46(2): 443-460.
[10] 高福红, 王磊, 许文良, 王枫. 小兴安岭“晚古生代”地层的时代与物源:地质与碎屑锆石U-Pb年代学证据[J]. 吉林大学学报(地球科学版), 2016, 46(2): 469-481.
[11] 李红英, 张达, 周志广, 柳长峰, 李鹏举, 陈利贞, 谷丛楠. 内蒙古克什克腾旗林西组碎屑锆石LA-ICP-MS年代学及其地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(1): 146-162.
[12] 郑香伟, 吴健, 何胜林, 胡向阳, 梁玉楠. 基于流动单元的砂砾岩储层渗透率测井精细评价[J]. 吉林大学学报(地球科学版), 2016, 46(1): 286-294.
[13] 尼加提·阿布都逊, 木合塔尔·扎日, 吴兆宁. 中天山卡瓦布拉克杂岩带中闪长岩的锆石U-Pb年龄及Hf同位素特征[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1702-1712.
[14] 宋樾, 王建, 刘金霖, 包真艳. 西昆仑慕士塔格—公格尔印支期侵入岩岩石与锆石地球化学特征及研究意义[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1418-1435.
[15] 张渝金, 吴新伟, 江斌, 郭威, 杨雅军, 刘世伟, 崔天日, 李伟, 李林川, 司秋亮, 张超. 大兴安岭扎兰屯地区格根敖包组碎屑锆石U-Pb年代学、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2015, 45(2): 404-416.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!