吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (1): 252-260.doi: 10.13278/j.cnki.jjuese.20170048
殷长春, 卢永超, 刘云鹤, 张博, 齐彦福, 蔡晶
Yin Changchun, Lu Yongchao, Liu Yunhe, Zhang Bo, Qi Yanfu, Cai Jing
摘要: 系数矩阵存储和线性方程组求解是限制三维电磁积分方程方法发展的主要因素。Zhdanov提出准线性(QL)近似技术,建立了复杂散射场与背景场的线性关系,有效地避免了积分方程中大型线性方程组的求解,但是该算法用于多源问题航空电磁正演模拟时精度不高。因此,本文提出一种基于多重网格准线性(MGQL)近似的算法,并利用系数矩阵的Toeplitz性质存储矩阵和快速傅里叶变换,实现了矩阵与向量的快速乘积、降低了计算复杂度,采用多重网格结合了积分方程方法和准线性近似解法的优点,在保证精度的条件下提高计算速度、减少存储量。针对不同类型网格的模拟实验表明,相比于传统积分方程方法,本文算法在保证计算精度的同时,可以将计算速度极大地提高(>10倍)。
中图分类号:
[1] 殷长春,张博,刘云鹤,等.航空电磁勘查技术发展现状及展望[J].地球物理学报,2015,58(8): 2637-2653. Yin Changchun,Zhang Bo,Liu Yunhe,et al. Review on Airborne EM Technology and Developments[J]. Chinese Journal Geophysics,2015,58(8): 2637-2653. [2] Habashy T M,Groom R W,Spies B R. Beyond the Born and Rytov Approximations: A Nonlinear Approach to Electromagnetic Scattering[J]. J Geophys Res,1993,98(B2): 1759-1775. [3] Zhdanov M S,Fang S. Quasi-Linear Approximation in 3-D Electromagnetic Modeling[J]. Geophysics,1996,61(3): 646-665. [4] Zhdanov M S,Fang S. Quasi-Linear Series in Three-Dimensional Electromagnetic Modeling[J]. Radio Science,1997,32(6): 2167-2188. [5] Zhdanov M S,Dmitriev V I,Fang S,et al. Quasi-Analytical Approximations and Series in 3D Electromagnetic Modeling[J]. Geophysics,2000,65(6): 1746-1757. [6] Zhdanov M S,Tartaras E. Three-Dimensional Inver-sion of Multitransmitter Electromagnetic Data Based on the Localized Quasi-Linear Approximation[J]. Geophys J Int,2002,148(3): 506-519. [7] 刘永亮,李桐林,胡英才,等. 快速拟线性近似方法及三维频谱激电反演研究[J]. 地球物理学报,2015,58(12): 4709-4717. Liu Yongliang,Li Tonglin,Hu Yingcai,et al. Fast Quasi-Linear Approximation and the Three-Dimensional Spectrum of Induced Polarization Inversion Study[J]. Chinese Journal Geophysics,2015,58(12): 4709-4717. [8] Ueda T,Zhdanov M S. Fast Numerical Modeling of Multitransmitter Electromagnetic Data Using Multigrid Quasi-Linear Approximation[J]. IEEE Transactions on Geoscience and Remote Sensing,2006,44(6): 1428-1434. [9] 周后型.大型电磁问题快速算法的研究[D].南京:东南大学,2002. Zhou Houxing. Inverstigations on Fast Algorithms for Electrically Large Eletromagnetic Problems[D]. Nanjing: Southeast University, 2002. [10] Zhang Z Q,Liu Q H. Three-Dimensional Weak-Form Conjugate- and Biconjugate-Gradient FFT Methods for Volume Integral Equations[J]. Microwave and Optical Technology Letters,2001,29(5): 350-356. [11] Hohmann G W. Three-Dimesional Induced Polariza-tion and Electromagnetic Modeling[J]. Geophysics,1975,40(2): 309-324. [12] Wannamaker P E,Hohmann G W,Sanfilipo W A. Electromagnetic Modeling of Three-Dimensional Using Integral Equations[J]. Geophysics,1984,49(1): 60-74. [13] Born M. Optic[M]. New York: Springer,1933. [14] Zhdanov M S,Lee S K,Yoshioka K. Integral Equation Method for 3D Modeling of Electromagnetic Fields in Complex Structures with Inhomogeneous Background Conductivity[J]. Geophysics,2006,71(6): G333-G345. [15] Gao G Z,Torres-Verdin C,Fang S. Fast 3D Modeling of Borehole Induction Measurements in Dipping and Anisotropic Formations Using a Novel Approximation Technique[J]. Petrophysics,2004,45(4): 335-349. [16] 张金会,孙建国. 三维直流电场积分方程中奇异性的近似处理[J]. 吉林大学学报(地球科学版),2009,39(5): 923-928. Zhang Jinhui,Sun Jianguo. Treatment of Singularity in Integration Equations for 3D DC Electrical Field[J]. Journal of Jilin University (Earth Science Edition),2009,39(5): 923-928. [17] Xiong Z. Electromagnetic Fields of Electric Dipoles Embedded in a Stratified Anisotropic Earth[J]. Geophysics,1989,54(12): 1643-1646. [18] Xiong Z. Electromagnetic Modeling of 3-D Structures by the Method of System Iteration Using Integral Equations[J]. Geophysics,1992,57(12): 1556-1561. [19] 张辉,李桐林,董瑞霞. 基于电偶源的体积分方程法三维电磁反演[J]. 吉林大学学报(地球科学版),2006,36(2): 284-288. Zhang Hui,Li Tonglin,Dong Ruixia. 3D Electromagnetic Inversion by Volume Integral Equation Method Based on Current Dipole Source[J]. Journal of Jilin University (Earth Science Edition),2006,36(2): 284-288. [20] Newman G A,Alumbaugh D L. Frequency-Domain Modeling of Airborne Electromagnetic Responses Using Staggered Finite Differences[J]. Geophysical Prospecting,1995,43: 1021-1042. [21] 黄威,殷长春,贲放,等. 频率域航空电磁三维矢量有限元正演模拟[J]. 地球科学,2016,41(2): 331-342. Huang Wei,Yin Changchun,Ben Fang,et al. 3D Forward Modeling for Frequency AEM by Vector Finite Element[J]. Earth Science,2016,41(2): 331-342. [22] 张博,殷长春,刘云鹤,等. 起伏地表频率域/时域航空电磁系统三维正演模拟研究[J]. 地球物理学报,2016,59(4): 1506-1520. Zhang Bo,Yin Changchun,Liu Yunhe,et al. 3D Modeling on Topographic Effect for Frequency-/Time-Domain Airborne EM Systems[J].Chinese Journal Geophysics,2016,59(4): 1506-1520. [23] 王德智.基于积分方程技术的三维电磁法正演模拟研究[D].长春:吉林大学,2015. Wang Dezhi. Three-Dimensional EM Forward Modeling Based on Integral Equation Method[D]. Changchun: Jilin University,2015. [24] Chew W C,Tong M S,Hu B. Integral Equation Me-thods for Electromagnetic and Elastic Waves[M]. San Rafeal: Morgan & Claypool Publishers,2009. |
[1] | 李建平, 翁爱华, 李世文, 李大俊, 李斯睿, 杨悦, 唐裕, 张艳辉. 基于球坐标系下有限差分的地磁测深三维正演[J]. 吉林大学学报(地球科学版), 2018, 48(2): 411-419. |
[2] | 曾昭发, 霍祉君, 李文奔, 李静, 赵雪宇, 何荣钦. 任意各向异性介质三维有限元航空电磁响应模拟[J]. 吉林大学学报(地球科学版), 2018, 48(2): 433-444. |
[3] | 陈辉, 尹敏, 殷长春, 邓居智. 大地电磁三维正演聚集多重网格算法[J]. 吉林大学学报(地球科学版), 2018, 48(1): 261-270. |
[4] | 李大俊, 翁爱华, 杨悦, 李斯睿, 李建平, 李世文. 地-井瞬变电磁三维交错网格有限差分正演及响应特性[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1552-1561. |
[5] | 贲放, 刘云鹤, 黄威, 徐驰. 各向异性介质中的浅海海洋可控源电磁响应特征[J]. 吉林大学学报(地球科学版), 2016, 46(2): 581-593. |
[6] | 王卫平, 曾昭发, 李静, 吴成平. 频率域航空电磁法地形影响和校正方法[J]. 吉林大学学报(地球科学版), 2015, 45(3): 941-951. |
[7] | 张 辉,李桐林,董瑞霞. 基于电偶源的体积分方程法三维电磁反演[J]. J4, 2006, 36(02): 284-0288. |
|