吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (2): 394-401.doi: 10.13278/j.cnki.jjuese.20170246
杜威, 许家姝, 吴燕冈, 郝梦成
Du Wei, Xu Jiashu, Wu Yangang, Hao Mengcheng
摘要: 在位场数据处理中,垂向导数具有重要的物理意义。其在一定程度上可以划分不同深度和大小异常源产生的叠加异常,且导数的阶次越高,这种分辨能力就越强,但通常认为高阶导数的换算是不稳定的。本文在Tikhonov正则化求位场垂向高阶导数的基础上,结合迭代法进行逐次逼近,提出了位场高阶导数的Tikhonov正则化迭代法,并且得到Tikhonov正则化迭代法的递推公式。通过对该方法的滤波特性分析可以看出,该方法计算的位场垂向高阶导数具有一定的稳定性及保幅性。模型试验和实际数据的处理表明,该方法计算结果较常规FFT求导法有更高的稳定性和实用价值。
中图分类号:
[1] 肖锋,吴燕冈,孟令顺. 重力异常图中的边界增强和提取技术[J]. 吉林大学学报(地球科学版),2011,41(4):1197-1203. Xiao Feng, Wu Yangang, Meng Lingshun.Edge Enhancement and Detection Technology in Gravity Anomaly Map[J]. Journal of Jilin University (Earth Science Edition), 2011,41(4):1197-1203. [2] 张冲,黄大年,秦朋波,等.重力场向下延拓的三阶Adams-Bashforth公式法[J]. 吉林大学学报(地球科学版),2017,47(5):1533-1542. Zhang Chong, Huang Danian, Qin Pengbo, et al. Third-Order Adams-Bashforth Formula Method for Downward Continuation of Gravity Field[J]. Journal of Jilin University (Earth Science Edition), 2017,47(5):1533-1542. [3] 徐世浙. 用边界单元法计算任意形体的重力异常及其导数[J]. 石油物探, 1984,23(2):22-37. Xu Shizhe. The Calculation of the Gravitational Anomaly and Its Derivative of the Geologic Body with Arbitrary Configuration by Boundary-Elements Method[J]. Geophysical Prospecting for Petroleum, 1984, 23(2):22-37. [4] 汪炳柱. 用样条函数法求重力异常二阶垂向导数和向上延拓计算[J]. 石油地球物理勘探, 1996, 31(3):415-422. Wang Bingzhu. Computing the Vertical Second Derivative and Upward Continuation of Gravity Anomaly by Spline Function Method[J]. Oil Geophysical Prospecting, 1996, 31(3):415-422. [5] 姚长利,黄卫宁,管志宁. 综合利用位场及其垂直梯度的快速样条曲化平方法[J]. 石油地球物理勘探, 1997, 32(2):229-236. Yao Changli, Huang Weining,Guan Zhining. Fast Splines Conversion of Curvedsurface Potential Field and Vertical Gradient Data into Horizontal-Plane Data[J]. Oil Geophysical Prospecting, 1997, 32(2):229-236. [6] Wang B, Krebes E S, Ravat D. High-Precision Poten-tial-Field and Gradient-Component Transformations and Derivative Computations Using Cubic B-Splines[J]. Geophysics, 2008, 73(5):135-142. [7] Clarke G K C. Optimum Second-Derivative and Down-ward-Continuation Filters[J]. Geophysics, 1969, 34(3):424-437. [8] 侯重初. 补偿圆滑滤波方法[J]. 石油物探, 1981, 20(2):22-29. Hou Zhongchu. Filtering of Smooth Compensation[J]. Geophysical Prospecting for Petroleum, 1981, 20(2):22-29. [9] Pašteka R, Richter F P, Karcol R, et al. Regularized Derivatives of Potential Fields and Their Role in Semi-Automated Interpretation Methods[J]. Geophysical Prospecting, 2009, 57(4):507-516. [10] 曾小牛, 李夕海, 贾维敏,等. 位场各阶垂向导数换算的新正则化方法[J]. 地球物理学报, 2015, 58(4):1400-1410. Zeng Xiaoniu, Li Xihai, Jia Weimin, et al. A New Regularization Method for Calculating the Vertical Derivatives of the Potential Field[J].Chinese Journal of Geophysics, 2015, 58(4):1400-1410. [11] 王彦国, 张瑾. 位场高阶导数的波数域迭代法[J]. 物探与化探, 2016, 40(1):143-147. Wang Yanguo, Zhang Jin. The Iterative Method for Higher-Order Derivative Calculation of Potential Fields in Wave Number Domain[J]. Geophysical and Geochemical Exploration, 2016, 40(1):143-147. [12] Fedi M, Florio G. Detection of Potential Fields Sou-rce Boundaries by Enhanced Horizontal Derivative Method[J]. Geophysical Prospecting, 2001, 49(1):40-58. [13] Fedi M, Florio G. A Stable Downward Continuation by Using the ISVD Method[J]. Geophysical Journal International, 2002, 151(1):146-156. [14] Cooper G R J, Cowan D R. Filtering Using Variable Order Vertical Derivatives[J]. Computers & Geosciences, 2004, 30(5):455-459. [15] 卞光浪, 翟国君, 高金耀,等. 总强度磁场稳健向下延拓的改进泰勒级数法[J]. 测绘学报, 2014,43(1):30-36. Bian Guanglang, Zhai Guojun, Gao Jinyao, et al. Improved Taylor Series Approach for Stable Downward Continuation of Total Strength of Geomagnetic Field[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(1):30-36. [16] Xu M L, Yang C B, Wu Y G, et al. Edge Detection in the Potential Field Using the Correlation Coefficients of Multidirectional Standard Deviations[J]. Applied Geophysics, 2015, 12:23-34. |
[1] | 郑国磊, 徐新学, 李世斌, 袁航, 马为, 叶青. 天津市重力数据反演解释[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1221-1230. |
[2] | 王泰涵, 黄大年, 马国庆, 李野, 林松. 基于并行预处理算法的三维重力快速反演[J]. 吉林大学学报(地球科学版), 2018, 48(2): 384-393. |
[3] | 张冲, 黄大年, 秦朋波, 吴国超, 方刚. 重力场向下延拓的三阶Adams-Bashforth公式法[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1533-1542. |
[4] | 于德武, 龚胜平. 对迭代法位场向下延拓方法的剖析[J]. 吉林大学学报(地球科学版), 2015, 45(3): 934-940. |
[5] | 马国庆,黄大年,杜晓娟,李丽丽. Hartley变换在位场(重、磁)异常导数计算中的应用[J]. 吉林大学学报(地球科学版), 2014, 44(1): 328-335. |
[6] | 孙建国. 论直流电位场拟解析近似中的电位与电荷反射函数的物理意义[J]. J4, 2012, 42(2): 545-553. |
[7] | 王彦国, 王祝文, 张凤旭, 孟令顺, 张瑾, 邰振华. 位场向下延拓的导数迭代法[J]. J4, 2012, 42(1): 240-245. |
|