吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (2): 394-401.doi: 10.13278/j.cnki.jjuese.20170246

• 地球物理数据处理与解释技术 • 上一篇    下一篇

位场垂向高阶导数的Tikhonov正则化迭代法

杜威, 许家姝, 吴燕冈, 郝梦成   

  1. 吉林大学地球探测科学与技术学院, 长春 130026
  • 收稿日期:2017-09-21 出版日期:2018-03-26 发布日期:2018-03-26
  • 通讯作者: 许家姝(1982-),女,工程师,主要从事重磁数据处理解释方面的研究,E-mail:xujiashuxjs@jlu.edu.cn E-mail:xujiashuxjs@jlu.edu.cn
  • 作者简介:杜威(1990-),女,博士研究生,主要从事重磁数据处理解释方面的研究,E-mail:duwei0505@yeah.net
  • 基金资助:
    国家自然科学基金项目(40930314)

Tikhonov Regularization Iteration Method for High-Order Vertical Derivatives of Potential Field

Du Wei, Xu Jiashu, Wu Yangang, Hao Mengcheng   

  1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China
  • Received:2017-09-21 Online:2018-03-26 Published:2018-03-26
  • Supported by:
    Supported by National Natural Science Foundation of China (40930314)

摘要: 在位场数据处理中,垂向导数具有重要的物理意义。其在一定程度上可以划分不同深度和大小异常源产生的叠加异常,且导数的阶次越高,这种分辨能力就越强,但通常认为高阶导数的换算是不稳定的。本文在Tikhonov正则化求位场垂向高阶导数的基础上,结合迭代法进行逐次逼近,提出了位场高阶导数的Tikhonov正则化迭代法,并且得到Tikhonov正则化迭代法的递推公式。通过对该方法的滤波特性分析可以看出,该方法计算的位场垂向高阶导数具有一定的稳定性及保幅性。模型试验和实际数据的处理表明,该方法计算结果较常规FFT求导法有更高的稳定性和实用价值。

关键词: Tikhonov正则化, 迭代法, 位场, 垂向导数

Abstract: In potential field data processing, high-order vertical derivative has important physical significance. It can divide superimposed anomalies generated by sources with different depth and size. With the order increase of the derivative, the resolution becomes higher, however the calculation of the higher order derivative is unstable. In this study we proposed the Tikhonov regularization iteration method for high-order vertical derivatives based on the combination of Tikhonov regularization method and iteration method,and obtained the recursive formula of Tikhonov regularization iterative method. Through analyzing the filter characteristics of the method, we can see that the method has certain stability and amplitude preservation in the calculation of high-order vertical derivative. The results of the model test and the real data show that the stability and practical value of the method are higher than that of the routine FFT method.

Key words: Tikhonov regularization, iteration method, potential field, vertical derivative

中图分类号: 

  • P631.1
[1] 肖锋,吴燕冈,孟令顺. 重力异常图中的边界增强和提取技术[J]. 吉林大学学报(地球科学版),2011,41(4):1197-1203. Xiao Feng, Wu Yangang, Meng Lingshun.Edge Enhancement and Detection Technology in Gravity Anomaly Map[J]. Journal of Jilin University (Earth Science Edition), 2011,41(4):1197-1203.
[2] 张冲,黄大年,秦朋波,等.重力场向下延拓的三阶Adams-Bashforth公式法[J]. 吉林大学学报(地球科学版),2017,47(5):1533-1542. Zhang Chong, Huang Danian, Qin Pengbo, et al. Third-Order Adams-Bashforth Formula Method for Downward Continuation of Gravity Field[J]. Journal of Jilin University (Earth Science Edition), 2017,47(5):1533-1542.
[3] 徐世浙. 用边界单元法计算任意形体的重力异常及其导数[J]. 石油物探, 1984,23(2):22-37. Xu Shizhe. The Calculation of the Gravitational Anomaly and Its Derivative of the Geologic Body with Arbitrary Configuration by Boundary-Elements Method[J]. Geophysical Prospecting for Petroleum, 1984, 23(2):22-37.
[4] 汪炳柱. 用样条函数法求重力异常二阶垂向导数和向上延拓计算[J]. 石油地球物理勘探, 1996, 31(3):415-422. Wang Bingzhu. Computing the Vertical Second Derivative and Upward Continuation of Gravity Anomaly by Spline Function Method[J]. Oil Geophysical Prospecting, 1996, 31(3):415-422.
[5] 姚长利,黄卫宁,管志宁. 综合利用位场及其垂直梯度的快速样条曲化平方法[J]. 石油地球物理勘探, 1997, 32(2):229-236. Yao Changli, Huang Weining,Guan Zhining. Fast Splines Conversion of Curvedsurface Potential Field and Vertical Gradient Data into Horizontal-Plane Data[J]. Oil Geophysical Prospecting, 1997, 32(2):229-236.
[6] Wang B, Krebes E S, Ravat D. High-Precision Poten-tial-Field and Gradient-Component Transformations and Derivative Computations Using Cubic B-Splines[J]. Geophysics, 2008, 73(5):135-142.
[7] Clarke G K C. Optimum Second-Derivative and Down-ward-Continuation Filters[J]. Geophysics, 1969, 34(3):424-437.
[8] 侯重初. 补偿圆滑滤波方法[J]. 石油物探, 1981, 20(2):22-29. Hou Zhongchu. Filtering of Smooth Compensation[J]. Geophysical Prospecting for Petroleum, 1981, 20(2):22-29.
[9] Pašteka R, Richter F P, Karcol R, et al. Regularized Derivatives of Potential Fields and Their Role in Semi-Automated Interpretation Methods[J]. Geophysical Prospecting, 2009, 57(4):507-516.
[10] 曾小牛, 李夕海, 贾维敏,等. 位场各阶垂向导数换算的新正则化方法[J]. 地球物理学报, 2015, 58(4):1400-1410. Zeng Xiaoniu, Li Xihai, Jia Weimin, et al. A New Regularization Method for Calculating the Vertical Derivatives of the Potential Field[J].Chinese Journal of Geophysics, 2015, 58(4):1400-1410.
[11] 王彦国, 张瑾. 位场高阶导数的波数域迭代法[J]. 物探与化探, 2016, 40(1):143-147. Wang Yanguo, Zhang Jin. The Iterative Method for Higher-Order Derivative Calculation of Potential Fields in Wave Number Domain[J]. Geophysical and Geochemical Exploration, 2016, 40(1):143-147.
[12] Fedi M, Florio G. Detection of Potential Fields Sou-rce Boundaries by Enhanced Horizontal Derivative Method[J]. Geophysical Prospecting, 2001, 49(1):40-58.
[13] Fedi M, Florio G. A Stable Downward Continuation by Using the ISVD Method[J]. Geophysical Journal International, 2002, 151(1):146-156.
[14] Cooper G R J, Cowan D R. Filtering Using Variable Order Vertical Derivatives[J]. Computers & Geosciences, 2004, 30(5):455-459.
[15] 卞光浪, 翟国君, 高金耀,等. 总强度磁场稳健向下延拓的改进泰勒级数法[J]. 测绘学报, 2014,43(1):30-36. Bian Guanglang, Zhai Guojun, Gao Jinyao, et al. Improved Taylor Series Approach for Stable Downward Continuation of Total Strength of Geomagnetic Field[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(1):30-36.
[16] Xu M L, Yang C B, Wu Y G, et al. Edge Detection in the Potential Field Using the Correlation Coefficients of Multidirectional Standard Deviations[J]. Applied Geophysics, 2015, 12:23-34.
[1] 郑国磊, 徐新学, 李世斌, 袁航, 马为, 叶青. 天津市重力数据反演解释[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1221-1230.
[2] 王泰涵, 黄大年, 马国庆, 李野, 林松. 基于并行预处理算法的三维重力快速反演[J]. 吉林大学学报(地球科学版), 2018, 48(2): 384-393.
[3] 张冲, 黄大年, 秦朋波, 吴国超, 方刚. 重力场向下延拓的三阶Adams-Bashforth公式法[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1533-1542.
[4] 于德武, 龚胜平. 对迭代法位场向下延拓方法的剖析[J]. 吉林大学学报(地球科学版), 2015, 45(3): 934-940.
[5] 马国庆,黄大年,杜晓娟,李丽丽. Hartley变换在位场(重、磁)异常导数计算中的应用[J]. 吉林大学学报(地球科学版), 2014, 44(1): 328-335.
[6] 孙建国. 论直流电位场拟解析近似中的电位与电荷反射函数的物理意义[J]. J4, 2012, 42(2): 545-553.
[7] 王彦国, 王祝文, 张凤旭, 孟令顺, 张瑾, 邰振华. 位场向下延拓的导数迭代法[J]. J4, 2012, 42(1): 240-245.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!