吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (4): 1221-1230.doi: 10.13278/j.cnki.jjuese.20170171

• 地球探测与信息技术 • 上一篇    下一篇

天津市重力数据反演解释

郑国磊1, 徐新学1, 李世斌1, 袁航1, 马为1, 叶青2   

  1. 1. 天津市地球物理勘探中心, 天津 300170;
    2. 中国地震台网中心, 北京 100045
  • 收稿日期:2017-11-21 出版日期:2018-07-26 发布日期:2018-07-26
  • 通讯作者: 徐新学(1970-),男,教授级高级工程师,工程硕士,主要从事地球物理方法的应用及研究工作,E-mail:xuxinxue@126.com E-mail:xuxinxue@126.com
  • 作者简介:郑国磊(1983-),男,工程师,硕士,主要从事重力勘探研究、软件编写及三维可视化建模工作,E-mail:zhengguolei@126.com
  • 基金资助:
    中国地质调查局、天津市国土资源和房屋管理局合作项目(1212011220232)

Inversion of Gravity Data in Tianjin

Zheng Guolei1, Xu Xinxue1, Li Shibin1, Yuan Hang1, Ma Wei1, Ye Qing2   

  1. 1. Tianjin Geophysical Exploration Center, Tianjin 300170, China;
    2. China Earthquake Networks Center, Beijing 100045, China
  • Received:2017-11-21 Online:2018-07-26 Published:2018-07-26
  • Supported by:
    Supported by Cooperation Project Between China Geological Survey and Tianjin Municipal Bureau of Land Resources and Housing Administration(1212011220232)

摘要: 重力数据反演是获取地下地质信息的有效手段。本文通过对天津市全区密度和电性参数的统计分析,了解天津市地层的物性分布规律。在对研究区布格重力异常数据采用归一化总水平导数垂向导数(NVDR-THDR)技术处理的基础上,对断裂构造进行了识别,对构造单元进行了划分。然后结合研究区地质资料,应用Geosoft软件中的密度界面反演模块对各构造单元内的密度界面起伏进行反演。并以GOCAD软件为平台,构建了天津市三维可视化地质模型,借助大地电磁(MT)测深点虚拟钻孔,实现了对主要地质界面和构造的标定。最后利用布格重力异常数据拟合同位置地质剖面,验证了模型的可靠性。应用上述反演成果,结合区内地质认识,推断宝坻断裂(F1)、蓟运河断裂(F2)、F3、杨柳青断裂(F4)、F7在中生代后活动性较强,沧东断裂(F6)和天津断裂(F30)在古近纪后活动性较强。

关键词: 重力反演, 归一化总水平导数垂向导数, 断裂识别, 虚拟钻孔, GOCAD三维可视化建模, 天津

Abstract: Gravity inversion is one of the most important techniques by which underground geological information is obtained. With density and electrical parameters statistical result in Tianjin, distributional characteristics of physical property of strata are studied in this paper. Using the technique of normalized vertical derivative of the total horizontal derivative of the bouguer gravity anomaly in Tianjin, this paper infers the faults structure and divides into tectonic units in Tianjin. Then the author carried out the inversion of density interfaces inside every tectonic unit in combination with geological information by the density interface inversion module in Geosoft software, and constructed 3-D visual geological models with the inversion results based on the software of GOCAD. In addition, calibrating of the main geological interface and structure was realized by means of virtual drill which is made by depth-apparent resistivity calculated by MT profiles. And the model reliability was verified by the geological profile fitted by Burguer gravity anomaly in the same position. By using the inversion results and previous geological understanding in this area, we inferred Baodi fault、Jiyunhe fault、F3 fault、Yangliuqing fault and F7 fault have strong activity after the Mesozoic era, and so are Cangdong fault and Tianjin fault after Paleogene.

Key words: gravity inversion, NVDR-THDR, fault identification, virtual drill, 3-Dimensional visualization modeling based on GOCAD, Tianjin

中图分类号: 

  • P631.1
[1] 于鹏,王家林,吴健生. 二度半长方体组合模型的重力模拟退火反演[J]. 地球物理学报,2007, 50(3):882-889. Yu Peng, Wang Jialin, Wu Jiansheng. An Inversion of Gravity Anomalies by Using a 215 Dimensional Rectangle Gridded Model and the Simulated Annealing Algorithm[J]. Chinese Journal of Geophysics, 2007, 50(3):882-889.
[2] 刘彦,吕庆田,李晓斌,等. 基于模型降阶的贝叶斯方法在三维重力反演中的实践[J]. 地球物理学报,2015, 58(12):4727-4739. Liu Yan, Lü Qingtian, Li Xiaobin, et al. 3D Gravity Inversion Based on Bayesian Method with Model Order Reduction[J]. Chinese Journal of Geophysics, 2015, 58(12):4727-4739.
[3] 冯旭亮,王万银,刘富强,等. 裂陷盆地基底双界面模式二维重力反演[J]. 地球物理学报,2014, 57(6):1934-1945. Feng Xuliang, Wang Wanyin, Liu Fuqiang, et al. 2D Gravity Inversion of Basement Relief of Rift Basin Based on a Dual Interface Model[J]. Chinese Journal of Geophysics, 2014, 57(6):1934-1945.
[4] Renata R C, Peter C H, Iata A S, et al. Basement Structures over Rio Grande Rise from Gravity Inversion[J]. Journal of South American Earth Sciences, 2017, 75:85-91.
[5] Mohammad R, Ali M, Ali N K. Fast 3D Inversion of Gravity Data Using Solution Space Prior Conditioned Lanczos Bidiagonalization[J]. Journal of Applied Geophysics, 2017, 136:42-50.
[6] 高秀鹤, 黄大年, 孙思源,等. 重力梯度数据协克里金三维反演确定岩脉倾向[J]. 吉林大学学报(地球科学版), 2017,47(2):589-596. Gao Xiuhe, Huang Danian, Sun Siyuan, et al. Identify the Dip Angle of the Dipping Dike Model Based on Cokriging Inversion of Gravity Gradient Data[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(2):589-596.
[7] 王丹丹, 李世臻, 周新桂, 等. 大兴安岭地区突泉盆地高精度重磁电特征及其构造格架[J]. 吉林大学学报(地球科学版), 2016, 46(1):240-253. Wang Dandan, Li Shizhen, Zhou Xingui, et al. Lithology Lithofacies Identification and Deep Structure of Tuquan Basin in Great Xinggan Range Area Based on High-Precision Gravity-Magnetic-Electrical Survey[J]. Journal of Jilin University(Earth Science Edition), 2016, 46(1):240-253.
[8] 张聪, 石砥石, 张子亚, 等. 云南楚雄盆地西部高精度重磁电特征及基底特征[J]. 吉林大学学报(地球科学版), 2018, 48(3):863-871. Zhang Cong, Shi Dishi, Zhang Ziya, et al. Basement Structure of Western Chuxiong Basin in Yunnan Province:Using High-Precision Gravity-Magnetic-Electrical Survey[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(3):863-871.
[9] 马国庆, 孟庆发, 黄大年. 基于重力异常的松辽盆地构造特征识别[J]. 吉林大学学报(地球科学版), 2018, 48(2):507-516. Ma Guoqing, Meng Qingfa, Huang Danian. Structure Identification by Gravity Anomaly in Songliao Basin[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(2):507-516.
[10] 张冲, 黄大年, 秦朋波, 等. 重力场向下延拓的三阶Adams-Bashforth公式法[J]. 吉林大学学报(地球科学版), 2017, 47(5):1533-1542. Zhang Chong, Huang Danian, Qin Pengbo, et al. Third-Order Adams-Bashforth Formula Method for Downward Continuation of Gravity Field[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(5):1533-1542.
[11] Schneider A, Gerke H H, Maurer T. 3D Initial Sediment Distribution and Quantification of Mass Balances of An Artificially-Created Hydrological Catchment Based on Dems from Aerial Photographs Using GOCAD[J]. Physics and Chemistry of the Earth, 2011, 36(1/2/3/4):87-100.
[12] Ni X D, Chen K. Study on the Conversion of GOCAD Models to FLAC3D Models[J]. Applied Mechanics and Materials, 2014, 501/504:2527-2531.
[13] 郑国磊,徐新学,李世斌,等. 天津市重力数据三维可视化反演建模研究[J]. 物探化探计算技术,2015, 37(5):571-577. Zheng Guolei, Xu Xinxue, Li Shibin, et al. Constructing 3D Visualization Model With Gravity Data of Tianjin[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2015, 37(5):571-577.
[14] 孙先达,王璞珺,索丽敏,等. 松辽盆地火山岩储层三维可视化描述[J]. 吉林大学学报(地球科学版), 2007, 37(6):1272-1278. Sun Xianda, Wang Pujun, Suo Limin, et al. 3D Visualization Description of the Volcanic Rock Reservoir in the Songliao Basin[J]. Journal of Jilin University (Earth Science Edition), 2007, 37(6):1272-1278.
[15] 郑国磊, 徐新学, 袁航,等. 基于GOCAD软件的天津市大寺新家园海河教育园区三维可视化建模研究[J]. 地球物理学进展, 2017,32(5):2261-2267. Zheng Guolei, Xu Xinxue, Yuan Hang, et al. 3-Dimensional Visualization Modeling Research on Dasi New Home-Haihe River Education Garden in Tianjin Based on GOCAD Platform[J]. Progress in Geophysics, 2017, 32(5):2261-2267.
[16] 林承焰, 王杨, 杨山, 等. 基于CT的数字岩心三维建模[J]. 吉林大学学报(地球科学版), 2018, 48(1):307-317. Lin Chengyan, Wang Yang, Yang Shan, et al. 3D Modeling of Digital Core Based on X-Ray Computed Tomography[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(1):307-317.
[17] 张宝一, 杨莉, 陈笑扬, 等. 基于图切地质剖面的区域成矿地质体三维建模与资源评价:以桂西南地区锰矿为例[J]. 吉林大学学报(地球科学版), 2017, 47(3):933-948. Zhang Baoyi, Yang Li, Chen Xiaoyang, et al. Regional Metallogenic Geo-Bodies 3D Modeling and Mineral Resource Assessment Based on Geologic Map Cut Cross-Sections:A Case Study of Manganese Deposits in Southwestern Guangxi, China[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(3):933-948.
[18] 李继军,汪启年. 重磁电综合解释方法在天津城市三维地质结构调查中的应用[J]. 物探与化探,2007, 31(5):444-450. Li Jijun, Wang Qinian. The Application of Combined Gravity-Magnetic-Electric Method to the Urban Three-Dimensional Geological Structure Survey in Tianjin[J]. Geophysical and Geochemical Exploration, 2007, 31(5):444-450.
[19] 姜夫爵,陈敏,王正科. 天津地区的断裂构造特征[J]. 西北地质,2010, 43(2):143-149. Jiang Fujue, Chen Min, Wang Zhengke. Characteristics of Fault Structure in Tianjin Area[J]. Northwestern Geology, 2010, 43(2):143-149.
[20] 李世斌,马为,徐新学,等. 天津市地球物理场特征及基底构造研究[J]. 物探与化探,2015, 39(5):937-943. Li Shibin, Ma Wei, Xu Xinxue, et al. Characteristics of Geophysical Field and Basement Structure of Tianjin[J]. Geophysical and Geochemical Exploration, 2015, 39(5):937-943.
[21] 天津市地矿局. 天津市区域地质志[M]. 北京:地质出版社,1992. Tianjin Municipal Bureau of Geology and Mineral Resource. Regional Geology of Tianjin[M]. Beijing:Geological Publishing House, 1992.
[22] Wang W Y, Pan Y, Qiu Z Y. A New Edge Recog-nition Technology Based on the Normalized Vertical Derivative of the Total Horizontal Derivative for Potential Field Data[J]. Applied Geophysics, 2009, 6(3):226-233.
[1] 王泰涵, 黄大年, 马国庆, 李野, 林松. 基于并行预处理算法的三维重力快速反演[J]. 吉林大学学报(地球科学版), 2018, 48(2): 384-393.
[2] 李学元, 何满潮. 天津市热储规划分区和地热井审批系统研发[J]. 吉林大学学报(地球科学版), 2015, 45(2): 546-551.
[3] 赵林, 郑义, 毛国柱, 郭华. 天津围海造陆区吹填土氮磷的分布特征[J]. 吉林大学学报(地球科学版), 2015, 45(1): 255-264.
[4] 李发文, 冯平, 张超. 天津北三河地区垂向耦合产流模型及应用[J]. J4, 2011, 41(2): 459-464.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李向文, 张志国, 王可勇, 孙加鹏, 杨吉波, 杨贺. 大兴安岭北段宝兴沟金矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1071 -1084 .
[2] 崔亚川, 于介江, 杨万志, 张元厚, 崔策, 于介禄. 东天山觉罗塔格带黄山地区角闪辉长岩岩体的年代学、地球化学特征及岩石成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1105 -1120 .
[3] 赵希林, 姜杨, 邢光福, 于胜尧, 彭银彪, 黄文成, 王存智, 靳国栋. 陈蔡早古生代俯冲增生杂岩对华夏与扬子地块拼合过程的指示意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1135 -1153 .
[4] 张凤君, 刘哲华, 苏小四, 吕聪, 刘佳露. 土壤类型及组分对热活化过硫酸盐氧化降解土壤中挥发性氯代烃的影响[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1212 -1220 .