吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (2): 525-533.doi: 10.13278/j.cnki.jjuese.20170270

• 深部地质地球物理 • 上一篇    下一篇

大柏舍深井地电阻率观测布极方式分析

宁亚灵1,2, 许家姝3, 解滔4, 张国苓5, 卢军4   

  1. 1. 山西省地震局, 太原 030021;
    2. 太原大陆裂谷动力学国家野外科学观测研究站, 太原 030021;
    3. 吉林大学地球探测科学与技术学院, 长春 130026;
    4. 中国地震台网中心, 北京 100045;
    5. 河北省地震局, 石家庄 050021
  • 收稿日期:2017-09-29 出版日期:2018-03-26 发布日期:2018-03-26
  • 通讯作者: 许家姝(1982-),女,工程师,主要从事重力、磁法勘探方面的研究,E-mail:xujiashuxjs@jlu.edu.cn E-mail:xujiashuxjs@jlu.edu.cn
  • 作者简介:宁亚灵(1982-),女,工程师,主要从事电磁地震预报和热红外遥感方面的研究,E-mail:nyl000@qq.com
  • 基金资助:
    山西省地震局科研项目(SBK-1735);中国地震局震情跟踪项目(2018010402,2018010114);山西省科技攻关项目(20150313016-2)

Analysis on Deep-Well Apparent Resistivity Measurement at Dabaishe Seismic Station

Ning Yaling1,2, Xu Jiashu3, Xie Tao4, Zhang Guoling5, Lu Jun4   

  1. 1. Earthquake Administration of Shanxi Province, Taiyuan 030021, China;
    2. Continental Rift Valley Dynamics State Observatory of Taiyuan, Taiyuan 030021, China;
    3. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China;
    4. China Earthquake Networks Center, China Earthquake Administration, Beijing 100045, China;
    5. Earthquake Administration of Hebei Province, Shijiazhuang 050021, China
  • Received:2017-09-29 Online:2018-03-26 Published:2018-03-26
  • Supported by:
    Supported by Research Projects of Earthquake Administration of Shanxi Province (SBK-1735), Earthquake Situation Trace of China Earthquake Administration (2018010402, 2018010114) and Scientific and Technological Project of Shanxi Province(20150313016-2)

摘要: 为了评估观测质量,本文结合大柏舍地震台电测深资料,采用水平层状介质模型分析了该台站对称四极装置深井地电阻率观测时影响系数随电极深度和观测极距的变化。分析结果表明:大柏舍台现有的深井地电阻率观测水平测道虽然能有效地抑制来自地表的干扰,但是由于观测极距较小,不能很好地反映深部介质电阻率的变化信息;垂直测道因电极埋深位于地下水位变动层位,观测数据受地下水位波动影响较大,较难识别来自深部介质的信息。为有效地记录可能的孕震信息,水平测道极距AB/2取250~350 m、埋深H>150 m能满足需求,并建议增加NS向水平测道观测。

关键词: 地电阻率, 深井观测, 对称四极装置, 影响系数, 大柏舍台

Abstract: In order to evaluate the quality of observation,we interpreted the horizontally layered homogeneous medium model of Dabaishe station according to the electric sounding data. The measurement arrays at the station are the fixed Schlumberger arrays. The deep-well measurement has two set of arrays. One was horizontally placed shorter than 100 meters, and the other was vertically arranged. Under the layered model, we analyzed the sensitivity coefficient variations of deep-well apparent resistivity measurement versus the different electrode depth and the spacing of current electrodes. The results show that the horizontal deep-well measurement has strong ability on inhibiting from surface disturbances. However, its current electrodes spacing is relatively short, only 60 meters, thus the measurement data didn't effectively reflect the resistivity variations from deep mediums. The electrodes of the vertical deep-well measurement array is located within the layer where underground water level changes; therefore, its measurement data suffer a strong affection from water level variations, and it is very difficult to distinguish the resistivity variations of deep mediums from the data. In order to better detect the information associated with earthquakes, the spacing of horizontal arrays of AB/2 should be set as 250-350 m, and the bury depth should exceed 150 m. A horizontal array along NS direction is also recommended for a better result.

Key words: apparent resistivity, deep-well measurement, fixed Schlumberger arrays, sensitive coefficient, Dabaishe station

中图分类号: 

  • P631.4
[1] 钱家栋,陈有发,金安忠. 地电阻率法在地震预报中的应用[M]. 北京:地震出版社,1985:83-103. Qian Jiadong, Chen Youfa, Jin Anzhong. The Apparent Resistivity Method Used in Earthquake Prediction[M]. Beijing:Seismological Press, 1985:83-103.
[2] 杜学彬,叶青,马占虎,等. 强地震附近电阻率对称四极观测的探测深度[J]. 地球物理学报,2008,51(6):1943-1949. Du Xuebin, Ye Qing, Ma Zhanhu, et al. The Detection Depth of Symmetric Four-Electrode Resistivity Observation Innear the Epicentral Region of Strong Earthquakes[J]. Chinese Journal of Geophysics, 2008, 51(6):1943-1949.
[3] 钱复业,赵玉林,于谋明,等. 地震前地电阻率异常变化[J]. 中国科学:B辑,1982(9):831-839. Qian Fuye, Zhao Yulin, Yu Mouming, et al. Geo-Resistivity Anomaly Before Earthquake[J]. Science in China:Series B, 1982(9):831-839.
[4] 钱复业,赵玉林,刘婕,等. 唐山7.8级地震地电阻率临震功率谱异常[J]. 地震,1990(3):33-38. Qian Fuye, Zhao Yulin, Liu Jie, et al. Power Spectrum Anomaly of Earth Resistivity Immediately Before Tangshan Ms7.8 Earthquake[J]. Earthquake, 1990(3):33-38
[5] 桂燮泰,关华平,戴经安. 唐山、松潘地震前视电阻率短临异常图像重现性[J]. 西北地震学报,1989,11(4):71-75. Gui Xietai, Guan Huaping, Dai Jing'an. The Short -Term and Immediate Anomalous Pattern Recurrences of the Apparent Resistivity Before the Tangshan and Song Pan Earthquakes of 1976[J]. Northwestern Seismological Journal, 1989, 11(4):71-75.
[6] Lu J, Qian F Y, Zhao Y L. Sensitivity Analysis of the Schlumberger Monitoring Array:Application to Changes of Resistivity Proior to the 1976 Rathquake in Tangshan, China[J]. Tectonophysics, 1999, 307(3):397-405.
[7] Lu J, Xue S Z, Qian F Y, et al. Unexpected Changes in Resistivity Monitoring for Earthquakes of the Longmenshan in Sichuan China with a Fixed Schlumberger Sounding Array[J]. Pepi, 2004, 145(1/2/3/4):87-97.
[8] 张学民,李美,关华平. 汶川8.0级地震前的地电阻率异常分析[J]. 地震,2009,29(1):108-115. Zhang Xuemin, Li Mei, Guan Huaping. Anomaly Analysis of Earth Resistivity Observations Before the Wenchuan Earthquake[J]. Earthquake, 2009, 29(1):108-115.
[9] 张淑亮,李艳,王霞,等. 亚失稳态野外观测证据[J]. 吉林大学学报(地球科学版),2016,46(2):603-609. Zhang Shuliang, Li Yan, Wang Xia, et al. Outdoor Observation Evidence of the Meta-Instability State[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(2):603-609.
[10] 叶青,杜学彬,陈军营,等. 2003年大姚和民乐山丹地震1年尺度预测[J]. 地震研究,2005,28(3):226-230. Ye Qing, Du Xuebin, Chen Junying, et al. One-Year Prediction for the Dayao and Minle-Shandan Earthquakes in 2003[J]. Journal of Seismological Research, 2005, 28(3):226-230.
[11] 杜学彬. 在地震预报中的两类视电阻率变化[J]. 中国科学:地球科学,2010,40(10):1321-1330. Du Xuebin. Two Types of Changes in Apparent Resistivity in Earthquake Prediction[J]. Scientia Sinica:Terrae, 2010, 40(10):1321-1330.
[12] 卫定军,李春贵. 搭建蔬菜大棚对固原地电台视电阻率观测影响的分析[J]. 地震地磁观测与研究,2009,30(2):77-82. Wei Dingjun, Li Chungui. Analysis about Influence of Green House on Apparent Resistivity Observation at Guyuan Seismic Station[J]. Seismological and Geomagnetic Observation and Research, 2009, 30(2):77-82.
[13] 解滔,卢军,李美,等. 地埋钢缆对宝昌台地电阻率干扰的定量分析[J]. 地球物理学进展,2013,28(2):727-734. Xie Tao, Lu Jun, Li Mei, et al. Quantitative Analysis of Disturbance Caused by Burned Wirerope in Baochang Geoelectric Resistivity Station[J]. Progress in Geophys, 2013, 28(2):727-734.
[14] 石富强,张国强,方炜,等. 陕西周至地电台地电阻率年变特征分析[J]. 地震学报,2014,36(6):1113-1123. Shi Fuqiang, Zhang Guoqiang, Fang Wei, et al. Annual Variation Characteristics of Georesistivity at Zhouzhi Geoelectric Station Shaanxi Province[J]. Acta Seismologica Sinica, 2014, 36(6):1113-1123.
[15] 王帮本,刘永兰,李验轩. 深井地电阻率与地震预报[J].地震研究,1981,4(1):378-403. Wang Bangben, Liu Yonglan, Li Yanxuan. The Elecrtic Resisitivity in the Boreholes and the Earthquake Prediction[J]. Journal of Seismological Research, 1981, 4(1):378-403.
[16] 苏鸾声,王邦本,夏良苗,等. 井下电极观测地电阻率排除地面干扰的实验[J]. 地震学报,1982,4(3):274-276. Su Luansheng, Wang Bangben, Xia Liangmiao, et al. Elimination of Surface Disturbances in Earth-Resistivity Measurement by Lowering the Electrodes in Shallow Wells[J]. Acta Seismologica Sinica, 1982, 4(3):274-276.
[17] 刘允秀,吴国有,王蕃树,等. 深埋电极地电阻率观测的实验结果[C]//地震预测:地电方法论文集. 福州:福建科学技术出版社,1985:206-216. Liu Yunxiu, Wu Guoyou, Wang Fanshu, et a1. Test Result for Buried Electrode Resistivity Observation[C]//Collect Works of Earthquake Prediction:Geoelectrical Methods. Fuzhou:Science and Technology Press of Fujian, 1985:206-216.
[18] 刘昌谋,桂燮泰,柴剑勇,等. 河源地电台全空间地电阻率试验[J]. 华南地震,1994,14(3):40-45. Liu Changmou, Gui Xietai, Chai Jianyong, et al. The Observation Test in Deep-Hole Electrodes (Whole Space) Resistivity at the Heyuan Geoelectrical Observatory[J]. South China Journal of Seismology, 1994, 14(3):40-45.
[19] 田山,刘允秀,聂永安,等.地震地电阻率观测改进方法研究:电测井技术的移植应用与数值模型分析[J].地震学报,2009,31(3):272-281. Tian Shan, Liu Yunxiu, Nie Yong'an, et a1. Improved Method of Earth Resistivity Observation:Transplant Application and Numerical Model Analysis of Electric Well Logging Technique[J]. Acta Seismologica Sinica, 2009, 31(3):272-281.
[20] 聂永安,姚兰予. 成层半空间深埋电极产生的电位分布[J].中国地震,2009,25(3):246-225. Nie Yong'an, Yao Lanyu. Study on Electrical Potential by Buried Source Electrode Within Horizontally Layered Half-Space Model[J]. Earthquake Reasearch in China, 2009, 25(3):246-255.
[21] 聂永安,巴振宁,聂瑶. 深埋电极的地电阻率观测研究[J]. 地震学报,2010,32(1):33-40. Nie Yong'an, Ba Zhenning, Nie Yao. Study on Buried Electrode Resistivity Monitoring System[J]. Acta Seismologica Sinica, 2010, 32(1):33-40.
[22] 解滔,杜学彬,陈军营,等. 井下地电阻率观测中地表电流干扰影响计算[J]. 地球物理学进展,2012,27(1):112-121. Xie Tao, Du Xuebin, Chen Junying, et a1. Calculation for the Influence from the Surface Disturbance Current in the Deep-Well Geoelectrical Resistivity Observation[J]. Progress in Geophys, 2012, 27(1):112-121.
[23] 解滔,杜学彬,卢军. 井下视电阻率观测影响系数的分析[J]. 中国地震,2016,32(1):40-53. Xie Tao, Du Xuebin, Lu Jun. Sensitivity Coefficients Analysis of Deep-Well Apparent Resistivity Measurement[J]. Earthquake Reasearch in China, 2016, 32(1):40-53.
[24] 解滔,卢军. 地电阻率三维影响系数及其应用[J]. 地震地质,2015,37(4):1125-1135. Xie Tao, Lu Jun. Three-Dimensional Sensitivity Coefficients of Apparent Resistivity and Preliminary Application[J]. Seismology and Geology, 2015, 37(4):1125-1135.
[25] 张磊,乔子云,罗娜,等. 河北大柏舍台深井与浅层地电阻率观测对比分析[J]. 华北地震科学,2015,33(4):49-53. Zhang Lei, Qiao Ziyun, Luo Na, et al. Contrastive Analysis of Georesistivity in Deep-Well and on Ground at Dabaishe Station[J]. North China Earthquake Sciences, 2015, 33(4):49-53.
[26] 赵玉林,卢军,张洪魁,等. 电测量在中国地震预报中的应用[J]. 地震地质,2001,23(2):277-285. Zhao Yulin, Lu Jun, Zhang Hongkui, et al. The Application of Electrical Measurements to Earthquake Prediction in China[J]. Seismology and Geology, 2001, 23(2):277-285.
[27] 张国苓,乔子云,贾立峰,等. 隆尧地电阻率与地下水位关系分析[J]. 地震地磁观测与研究,2013,34(5/6):141-143. Zhang Guoling, Qiao Ziyun, Jia Lifeng, et al. The Study of Relationship Between Earth Resistivity and Ground Water Level at Longyao Seismic Station[J]. Seismological and Geomagnetic Observation and Research, 2013, 34(5/6):141-143.
[28] 钱家栋,曹爱民. 1976年唐山7.8级地震地电阻率和地下水前兆综合物理机制研究[J]. 地震,1998,18(增刊1):1-9. Qian Jiadong, Cao Aimin. Research on Comprehensive Mechanism of Precursors in Apparant Resistivity and Water Table Associated with 1976 Tangshan Earthquake (M=7.8)[J]. Earthquake, 1998, 18(Sup. 1):1-9.
[29] Park S K, Van G P. Inversion of Pole-Pole Data for 3-D Resistivity Structure Beneath Arrays of Electrodes[J]. Geophysics, 1991, 56(7):951-960.
[30] Seigel H O. Mathematical Formulation and Type Curves for Induced Polarization[J]. Geophysics, 1959, 24(3):547-565.
[1] 叶云飞, 孙建国, 张益明, 熊凯. 基于立体层析反演的低频模型构建在深水区储层反演中的应用:以南海深水W构造为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1253-1259.
[2] 刘一, 刘财, 刘洋, 勾福岩, 李炳秀. 复杂地震波场的自适应流预测插值方法[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1260-1267.
[3] 邓馨卉, 刘财, 郭智奇, 刘喜武, 刘宇巍. 济阳坳陷罗家地区各向异性页岩储层全波场地震响应模拟及分析[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1231-1243.
[4] 张冰, 郭智奇, 徐聪, 刘财, 刘喜武, 刘宇巍. 基于岩石物理模型的页岩储层裂缝属性及各向异性参数反演[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1244-1252.
[5] 刘明忱, 孙建国, 韩复兴, 孙章庆, 孙辉, 刘志强. 基于自适应加权广义逆矢量方向滤波估计地震同相轴倾角[J]. 吉林大学学报(地球科学版), 2018, 48(3): 881-889.
[6] 胡宁, 刘财. 分数阶时间导数计算方法在含黏滞流体黏弹双相VTI介质波场模拟中的应用[J]. 吉林大学学报(地球科学版), 2018, 48(3): 900-908.
[7] 周进举, 王德利, 李博文, 李强, 王睿. 基于解耦传播的波场分解方法在VTI介质弹性波逆时偏移中的应用[J]. 吉林大学学报(地球科学版), 2018, 48(3): 909-921.
[8] 孙建国, 苗贺. 基于Chebyshev走时逼近的三维多次反射射线计算[J]. 吉林大学学报(地球科学版), 2018, 48(3): 890-899.
[9] 郑确, 刘财, 田有. 辽宁海城及其邻区地震b值空间分布特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 922-933.
[10] 刘四新, 朱怡诺, 王旭东, 宋二乔, 贺文博. 工程地震折射波解释方法研究进展[J]. 吉林大学学报(地球科学版), 2018, 48(2): 350-363.
[11] 单刚义, 韩立国, 张丽华. 基于模型约束的Kirchhoff积分法叠前深度成像[J]. 吉林大学学报(地球科学版), 2018, 48(2): 379-383.
[12] 孙建国, 李懿龙, 孙章庆, 苗贺. 基于模型参数化的地震波走时与射线路径计算[J]. 吉林大学学报(地球科学版), 2018, 48(2): 343-349.
[13] 徐泰然, 卢占武, 王海燕, 李洪强, 李文辉. 深地震反射剖面揭示的西藏娘热矿集区上地壳结构[J]. 吉林大学学报(地球科学版), 2018, 48(2): 556-565.
[14] 王通, 王德利, 冯飞, 程浩, 魏敬轩, 田密. 三维稀疏反演多次波预测及曲波域匹配相减技术[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1865-1874.
[15] 卢燕红, 吴兆营, 丁广, 付琦, 张帆. 吉林前郭5.8级震区上地壳速度结构[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1894-1903.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!