吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (4): 1212-1220.doi: 10.13278/j.cnki.jjuese.20170240

• 地质工程与环境工程 • 上一篇    下一篇

土壤类型及组分对热活化过硫酸盐氧化降解土壤中挥发性氯代烃的影响

张凤君1, 刘哲华1, 苏小四2, 吕聪1, 刘佳露1   

  1. 1. 地下水资源与环境教育部重点实验室(吉林大学), 长春 130021;
    2. 吉林大学水资源与环境研究所, 长春 130021
  • 收稿日期:2017-12-25 出版日期:2018-07-26 发布日期:2018-07-26
  • 通讯作者: 吕聪(1984-),女,副教授,主要从事高级氧化技术处理土壤和水方面的研究,E-mail:lvcong@jlu.edu.cn E-mail:lvcong@jlu.edu.cn
  • 作者简介:张凤君(1957-),男,教授,主要从事水处理技术和膜分离技术方面的研究,E-mail:zhangfengjun@jlu.edu.cn
  • 基金资助:
    新疆自治区科技支疆项目(2016E02102);国家重点研发计划项目(2016YFE0123800)

Effects of Soil Types and Composition on Oxidative Degradation of Volatile Chlorinated Hydrocarbons by Thermally Activated Persulfate

Zhang Fengjun1, Liu Zhehua1, Su Xiaosi2, Lü Cong1, Liu Jialu1   

  1. 1. Key Laboratory of Groundwater Resources and Environment(Jilin University), Ministry of Education, Changchun 130021, China;
    2. Institute of Water Resources and Environment, Jilin University, Changchun 130021, China
  • Received:2017-12-25 Online:2018-07-26 Published:2018-07-26
  • Supported by:
    Supported by Autonomous Region Science and Technology Project of Xinjiang (2016E02102) and National Key Research and Development Program of China(2016YFE0123800)

摘要: 为了探究高级氧化技术对土壤中有机氯代烃的氧化降解作用,为ISCO(in situ chemical oxidation)技术体系提供重要的理论依据和数据支撑,考察了热活化过硫酸盐(persulfate,PS)氧化降解不同类型土壤(砂类土壤、黏土类土壤)中挥发性氯代烃污染物(三氯乙烯(TCE)、三氯乙烷(TCA)、顺式-1,2-二氯乙烯(cis-1,2-DCE)、1,2-二氯乙烷(1,2-DCA))的效能;同时,通过硫酸盐与土壤相互作用过程研究,探究了不同土壤介质中有机质和无机组分在过硫酸盐消耗中所占比例。结果表明:在50℃时,热活化过硫酸盐可有效降解土壤中1,2-DCA、cis-1,2-DCE、TCA和TCE,砂类土壤介质中4种氯代烃降解效果依次为25%、89%、5%和61%,黏土类土壤介质中4种氯代烃降解效果依次为35%、86%、8%和63%;4种氯代烃的降解效果从高到低顺序依次为cis-1,2-DCE、TCE、1,2-DCA、TCA,砂类土壤中的氯代烃总体降解效果优于黏土类土壤中氯代烃的降解效果。另外,土壤中过硫酸盐氧化降解氯代烃反应研究发现,砂类和黏土类土壤介质组分中有机质消耗率分别为81.3%和72.6%,铁元素消耗率分别为80.5%和38.6%,表明土壤介质组分与过硫酸盐发生了氧化还原反应,从而导致过硫酸盐自身的大量消耗。由此可知,土壤介质中的有机质、铁元素等矿物质均参与过硫酸盐的消耗过程,且土壤有机质、铁元素与氯代烃之间在消耗过硫酸盐反应上存在竞争关系,土壤组分过多地消耗了过硫酸盐,导致了氯代烃的氧化降解效率较低。因此,针对实际有机氯代烃污染场地,采用过硫酸盐氧化技术进行修复时,过硫酸盐的实际投加量要远高于化学计量值,需充分考虑到土壤组分对过硫酸盐自身的消耗作用。

关键词: 硫酸根自由基, 热活化, 氯乙烯, 氯乙烷, 有机质, 矿物质

Abstract: This study focused on the thermally activated persulfate oxidation of the volatile chlorinated hydrocarbon (TCE, TCA, cis-1,2-DCE and 1,2-DCA) in the different soil media,sandy soil and clayey soil, and the interaction between persulfate and the two soil media in oxidation reaction was investigated to determine the contribution of organic and inorganic matter to the persulfate consumption in the soil system, which would provide an important theoretical basis and empirical guide for a successful design of ISCO technology in soil remediation. The results showed good degradation rates of 1,2-DCA, cis-1,2-DCE, TCA, and TCE by thermally activated persulfate oxidation in the both soil systems at 50℃. The degradation rates of the four chlorinated hydrocarbons in sandy soil were 25%, 89%, 5%, and 61% respectively; while the rates in clayey soil were 35%, 86%, 8%, and 63% respectively. The rates followed the order of cis-1,2-DCE>TCE>1,2-DCA>TCA. The rates in sandy soil were higher than those in clayey soil. In addition, the organic matter in sandy soil and clayey soil was reduced up to 81.3% and 72.6% respectively, and the iron content in sandy soil and clayey soil was reduced up to 80.5% and 38.6% respectively. This further indicated that a redox reaction occurred between persulfate and the soil composition, leading to a large amount of persulfate consumption. Herein, organic matter, iron and other inorganic matter in the soil media were involved in the persulfate consumption, and there was a competitive relationship among organic, iron and the four chlorinated hydrocarbons for the consumption of persulfate. Thus, too much persulfate was consumed by the soil component, resulting in a relatively low degradation rate of the four chlorinated hydrocarbons. Therefore, during the actual implementation, the dosage of persulfate should be much higher than the stoichiometric amount in the on-site remediation for the chlorinated hydrocarbons contaminated field sites by the thermally activated persulfate.

Key words: persulfate radical, thermal activation, chlorinated ethenes, chlorinated ethanes, organic content, mineral content

中图分类号: 

  • X53
[1] Pankow J F, Cherry J A. Dense Chlorinated Solvents and Other DNAPLs in Groundwater:History, Behavior, and Remediation.[M]. Waterloo Press:Portland, OR, 1996:522.
[2] Bianchi A P, Varney M S, Phillips J. Analysis of Volatile Organic Compounds in Estuarine Sediments Using Dynamic Headspace and Gas Chromatography:Mass Spectrometry[J]. Journal of Chromatography:A, 1991, 542(1):413-450.
[3] 梁花梅, 孙德栋, 郑欢, 等. 利用硫酸根自由基处理剩余污泥[J]. 大连工业大学学报, 2013, 32(1):47-50. Liang Huamei, Sun Dedong, Zheng Huan, et al. Treatment of Excess Sludge with Sulfate Free Radical[J]. Journal of Dalian Polytechnic University, 2013,32(1):47-50.
[4] 刘红梅, 褚华强, 陈家斌, 等. 过硫酸盐在地下水和土壤修复中的应用[J]. 现代化工, 2015, 35(4):42-46. Liu Hongmei, Chu Huaqiang, Chen Jiabin, et al. Application of Persulfate in Remediating Groundwater and Soil[J]. Modern Chemical Industry, 2015, 35(4):42-46.
[5] Huie R E, Clifton C L, Neta P. Electron Transfer Reaction Rates and Equilibria of the Carbonate and Sulfate Radical Anions[J]. International Journal of Radiation Applications & Instrumentation:Part C:Radiation Physics & Chemistry, 1991, 38(5):477-481.
[6] House D A. Kinetics and Mechanism of Oxidations by Peroxydisulfate[J]. Chemical Reviews, 1962, 62(3):185-203.
[7] 龙安华, 雷洋, 张晖. 活化过硫酸盐原位化学氧化修复有机污染土壤和地下水[J]. 化学进展, 2014, 26(5):898-908. Long Anhua, Lei Yang, Zhang Hui. In Situ Chemical Oxidation of Organic Contaminated Soil and Groundwater Using Activated Persulfate Process[J]. Progress in Chemistry, 2014,26(5):898-908.
[8] Buxton G V, Greenstock C L, Helman W P, et al. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (·OH/·O-) in Aqueous Solution[J]. Journal of Physical & Chemical Reference Data, 1988, 17(2):513-886.
[9] Mora V C, Rosso J A, M Rtire D O. et al. Phenol Depletion by Thermally Activated Peroxydisulfate at 70℃[J]. Chemosphere, 2011, 84(9):1270-1275.
[10] Waldemer R H, Tratnyek P G, Johnson R L, et al. Oxidation of Chlorinated Ethenes by Heat-Activated Persulfate:Kinetics and Products[J]. Environmental Science & Technology, 2007, 41(3):1010-1015.
[11] Liu C S, Shih K, Sun C X, et al. Oxidative Degradation of Propachlor by Ferrous and Copper Ion Activated Persulfate[J]. Science of the Total Environment, 2012, 416(2):507-512.
[12] 杨世迎, 杨鑫, 王萍, 等. 过硫酸盐高级氧化技术的活化方法研究进展[J]. 现代化工, 2009, 29(4):13-19. Yang Shiying, Yang Xin, Wang Ping, et al. Advances in Persulfate Oxidation Activation Methods of Persulfate Oxidation[J]. Modern Chemical Industry, 2009, 29(4):13-19.
[13] Yang Shiying, Wang Ping, Yang Xin, et al. A Novel Advanced Oxidation Process to Degrade Organic Pollutants in Wastewater:Microwave-Activated Persulfate Oxidation[J]. J Environment Science, 2009,21(9):1175-1180.
[14] Gao Yuqiong, Gao Naiyun, Deng Yang, et al. Ultraviolet (UV) Light-Activated Persulfate Oxidation of Sulfamethazine in Water[J]. Chem Eng J, 2012, 195/196:248-253.
[15] Mora V C, Rosso J A, Galo C L R, et al. Thermally Activated Peroxydisulfate in the Presence of Additives:A Clean Method for the Degradation of Pollutants[J]. Chemosphere, 2009, 75(10):1405-1409.
[16] Huang K C, Zhao Z, Hoag G E, et al. Degradation of Volatile Organic Compounds with Thermally Activated Persulfate Oxidation[J]. Chemosphere, 2005, 61(4):551-560.
[17] Liang C, Bruell C J, Marley M C, et al. Persulfate Oxidation for In Situ Remediation of TCE:I:Activated by Ferrous Ion with and Without a Persulfate:Thiosulfate Redox Couple[J]. Chemosphere, 2004, 55(9):1213-1223.
[18] Liang C, Bruell C J, Marley M C, et al. Persulfate Oxidation for in Situ Remediation of TCE:Ⅱ:Activated by Chelated Ferrous Ion[J]. Chemosphere, 2004, 55(9):1225-1233.
[19] Vance G F, David M B. Dissolved Organic Carbon and Sulfate Sorption by Spodosol Mineral Horizons[J]. Soil Science, 1992, 154(2):136-144.
[20] Bougie S, Dub J. Oxydation des Isomères de Iichlo-robenzène à L'aide du Persulfate de Sodium Soumis à Une Activation Thermique[J]. Journal of Environmental Engineering & Science, 2007, 6(4):397-407.
[21] Liang Chenju, Huang Chiufen, Mohanty N, et al. A Rapid Spectrophotometric Determination of Persulfate Anion in ISCO[J]. Chemosphere, 2008, 73(9):1540-1543.
[22] Johnson R L, Tratnyek P G, Johnson R O. Per-sulfate Persistence under Thermal Activation Conditions[J]. Environmental Science & Technology, 2008, 42(24):9350-9356.
[23] Wu Xiaoliang, Gu Xiaogang, Lu Shuguang, et al. Strong Enhancement of Trichloroethylene Degradation in Ferrous Ion Activated Persulfate System by Promoting Ferric and Ferrous Ion Cycles with Hydroxylamine[J]. Separation & Purification Technology, 2015, 147:186-193.
[24] Anipsitakis G P, Dionysiou D D. Radical Generation by the Interaction of Transition Metals with Common Oxidants[J]. Environmental Science & Technology, 2004, 38(13):3705-3712.
[25] Ko S, Crimi M, Marvin B K, et al. Comparative Study on Oxidative Treatments of NAPL Containing Chlorinated Ethanes and Ethenes Using Hydrogen Peroxide and Persulfate in Soils[J]. Journal of Environmental Management, 2012, 108(16):42-48.
[26] 孟凡勇, 刘锐, 小林刚, 等. 挥发性氯代烃在湿润土壤中的平衡吸附研究[J]. 环境科学, 2012, 33(4):1361-1368. Meng Fanyong, Liu Rui, Kobayashi Takeshi, et al. Study on Equilibrium Adsorption of Volatile Chlorinated Hydrocarbons on Humid Soils[J]. Environmental Science, 2012, 33(4):1361-1368.
[27] 张凤君, 贾晗, 刘佳露, 等. 有机氯代烃在壤土中的吸附和解吸特性[J]. 吉林大学学报(地球科学版), 2015, 45(5):1515-1522. Zhang Fengjun, Jia Han, Liu Jialu, et al. Sorption and Desorption of Chlorinated Hydrocarbons onto Loam Soil[J]. Journal of Jilin University (Earth Science Edition), 2015, 45(5):1515-1522.
[28] Liang Chenju, Lee I L, Hsu I Y, et al. Persulfate Oxidation of Trichloroethylene with and Without Iron Activation in Porous Media[J]. Chemosphere, 2008, 70(3):426-35.
[29] 顾小钢, 吕树光, 邱兆富, 等. 热活化过硫酸盐处理地下水中氯代烃的研究[C]//上海市化学化工学会2011年度学术年会论文集. 上海:化学世界,2011:125-126. Gu xiaogang, Lü shuguang, Qiu Zhaofu, et al. Study on the Treatment of Chlorinated Hydrocarbons in Groundwater by Heat Activated Persulfate[C]//Shanghai Society of Chemistry & Chemical lndustry, a Collection of Annual Academic Annual Meetings for 2011. Shanghai:Chemical World,2011:125-126.
[30] Chen Xiaoqing, Muthu M, Zhang Yanrong. Degrada-tion of p-Nitrophenol by Thermally Activated Persulfate in Soil System[J]. Chemical Engineering Journal, 2016, 283:1357-1365.
[31] He Yan, Xu Jianming, Wang Haizhen, et al. Detailed Sorption Isotherms of Pentachlorophenol on Soils and Its Correlation with Soil Properties[J]. Environmental Research, 2006, 101:362-372.
[1] 伍登浩, 高顺宝, 郑有业, 田坎, 张永超, 姜军胜, 余泽章, 黄鹏程. 西藏班公湖—怒江成矿带南侧矽卡岩型铜多金属矿床S、Pb同位素组成及成矿物质来源[J]. 吉林大学学报(地球科学版), 2018, 48(1): 70-86.
[2] 李志明, 张隽, 鲍云杰, 曹婷婷, 徐二社, 芮晓庆, 陈红宇, 杨琦, 张庆珍. 沾化凹陷渤南洼陷沙一段湖相富有机质烃源岩岩石学与孔隙结构特征:以罗63井和义21井取心段为例[J]. 吉林大学学报(地球科学版), 2018, 48(1): 39-52.
[3] 张朋, 杨宏智, 李斌, 寇林林, 杨凤超. 辽东青城子矿集区姚家沟钼矿床成矿物质来源、成矿年代及成矿动力学背景[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1684-1696.
[4] 贾福聚, 燕永锋, 伍伟, 刘晓玮. 云南老君山锡多金属成矿区硫、铅、氢、氧同位素地球化学[J]. 吉林大学学报(地球科学版), 2016, 46(1): 105-118.
[5] 张凤君, 贾晗, 刘佳露, 董佳新, 卢伟, 吕聪. 有机氯代烃在壤土中的吸附和解吸特性[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1515-1522.
[6] 孙耀庭, 徐守余, 张世奇, 徐昊清, 郭丽丽. 山东昌乐凹陷油页岩地球化学特征及成因探讨[J]. 吉林大学学报(地球科学版), 2015, 45(3): 736-742.
[7] 薛海涛, 田善思, 卢双舫, 刘敏, 王伟明, 王民. 分散可溶有机质的气源意义[J]. 吉林大学学报(地球科学版), 2015, 45(1): 52-60.
[8] 柳蓉, 杨小红,董清水,刘冬青, 林斌,徐银波,张超. 罗子沟盆地有机质热演化对砂岩物性的改造作用[J]. 吉林大学学报(地球科学版), 2014, 44(2): 460-468.
[9] 张家明,徐则民. 马卡山不同植被群落下非饱和带大孔隙流路径示踪试验[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1922-1935.
[10] 李悦铭,康春莉,张迎新,明恋,张赛,郭平. 溶解性有机质对冻融作用下污染土壤中重金属Pb的溶出释放规律[J]. 吉林大学学报(地球科学版), 2013, 43(3): 945-953.
[11] 叶霖, 杨玉龙, 高伟, 刘铁庚. 陕南铜厂铜矿床成矿物质来源探讨[J]. J4, 2012, 42(1): 92-103.
[12] 丁爱中, 郝娜, 程莉蓉, 张丹, 谭文捷, 张礼中, 林学钰. 四川德阳浅层地下水高含铁成因分析[J]. J4, 2009, 39(5): 868-873.
[13] 张 艳,王璞珺,陈文礼,刘万洙,唐华风. 低程度勘探区有效烃源岩的识别与平面成图--以塔里木盆地孔雀河地区为例[J]. J4, 2007, 37(3): 463-0468.
[14] 王世辉,陈春瑞,郑玉龙,刘胜英. 黑龙江省达连河油页岩地球化学特征及成因探讨[J]. J4, 2006, 36(6): 933-0937.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李向文, 张志国, 王可勇, 孙加鹏, 杨吉波, 杨贺. 大兴安岭北段宝兴沟金矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1071 -1084 .
[2] 崔亚川, 于介江, 杨万志, 张元厚, 崔策, 于介禄. 东天山觉罗塔格带黄山地区角闪辉长岩岩体的年代学、地球化学特征及岩石成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1105 -1120 .
[3] 赵希林, 姜杨, 邢光福, 于胜尧, 彭银彪, 黄文成, 王存智, 靳国栋. 陈蔡早古生代俯冲增生杂岩对华夏与扬子地块拼合过程的指示意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1135 -1153 .
[4] 郑国磊, 徐新学, 李世斌, 袁航, 马为, 叶青. 天津市重力数据反演解释[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1221 -1230 .