吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (5): 1483-1492.doi: 10.13278/j.cnki.jjuese.20170109

• 地球探测与信息技术 •    

利用重力异常反演马里亚纳海沟海底地形

范雕1, 李姗姗1, 孟书宇2, 邢志斌1, 冯进凯1   

  1. 1. 信息工程大学地理空间信息学院, 郑州 450001;
    2. 西安航天天绘数据技术有限公司, 西安 710054
  • 收稿日期:2018-01-04 发布日期:2018-11-20
  • 通讯作者: 李姗姗(1970-),女,教授,主要从事物理大地测量研究,E-mail:zzy_lily@sina.com E-mail:zzy_lily@sina.com
  • 作者简介:范雕(1991-),男,博士研究生,主要从事卫星测高和物理大地测量研究,E-mail:fandiao2311@mails.jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41274029,41404020,41774018,41504018);地理信息工程国家重点实验室开放基金项目(SKLGIE2016-M-3-2);信息工程大学校立课题(2017503902,2016601002)

Inversion of Mariana Trench Seabed Terrain Using Gravity Anomalies

Fan Diao1, Li Shanshan1, Meng Shuyu2, Xing Zhibin1, Feng Jinkai1   

  1. 1. Institute of Geospatial Information, Information Engineering University, Zhengzhou 450001, China;
    2. Xi'an Aerors Data Technology Co. Ltd, Xi'an 710054, China
  • Received:2018-01-04 Published:2018-11-20
  • Supported by:
    Supported by National Natural Science Foundation of China (41274029, 41404020, 41774018, 41504018), State Key Laboratory of Geo-Information Engineering (SKLGIE2016-M-3-2) and School Project of Information Engineering University(2017503902, 2016601002)

摘要: 针对利用船舶测量海底地形效率低和成本高的缺点,选取西太平洋板块俯冲菲律宾板块而形成的马里亚纳海沟所在海域作为实验区域,依据重力地质方法(GGM),利用重力异常数据反演海底地形。采用移去恢复技术确定了重力地质法模型的密度差异常数为2.32 g/cm3。分析比较了GGM海深模型、ETOPO1模型和直接将船测点海深数据格网化(模型1)3种海深模型之间的差异,并依据反演结果对"挑战者深渊"两侧地貌进行了研究。结果表明:GGM模型反演海底地形的结果优于ETOPO1模型,更优于将船测点海深数据直接格网化的结果;模型相对误差与海深的关系不大,受海底地形变化影响明显;在船测数据匮乏或者过于稀疏的海域,模型间海深差值结果较大;"挑战者深渊"海沟两侧的地貌有明显差异,在海沟南侧水深小于5 000 m的浅海部分,坡度平缓(2°~5°),而在水深大于5 000 m的部分,坡度明显增大(10°~15°);海沟北侧在整个下降阶段坡度很大(10°~15°),11°45'N附近出现一个缓冲地带。

关键词: 重力地质法, 密度差异常数, 向下延拓, 移去恢复, 马里亚纳海沟

Abstract: In order to overcome the shortcomings of using ships to measure sea-depth with low efficiency and high cost, the authors selected the Mariana Trench area formed by the Western Pacific plate dive to the Philippine plate as the experimental area, and used gravity anomalies data to inverse the sea-depth according to the gravity-geologic method. The density difference constant of the GGM (gravity-geologic method) model was determined to be by using the remove-restore technique. The differences between the GGM sea depth model, the ETOPO1 model and the model 1 which directly gridded dispersed ship data were analyzed and compared, and the landforms of the "challenger abyss" trench were studied based on the inversion results. The result shows that the seafloor topography computed by GGM model is superior to that by the ETOPO1 model, and even better than the results of the directly gridding of the ship survey data. The relative error of the model is not related to sea depth, but affected obviously by the change of seafloor topography. The sea-depth differences between the models are large in the area where the ship data are missing or too sparse. The landforms on the both sides of the "challenger abyss" trench are different. In the south side, when the water depth is less than 5 000 m, the gentle slope is about 2°-5°; while the water depth is greater than 5 000 m, the slope is increased significantly to about 10°-15°. In the north side, the slope is about 10°-15°. There is a buffer zone near latitude.

Key words: gravity-geologic method, density difference contrast, downward continuation, remove-restore technique, Mariana trench

中图分类号: 

  • P631.1
[1] 翟国君,黄谟涛,欧阳永忠,等. 卫星测高原理及其应用[J]. 海洋测绘, 2002, 22(1):57-62. Zhai Guojun, Huang Motao, Ouyang Yongzhong, et al. The Principle of Satellite Altimetry and Its Applications[J]. Hydrographic Surveying and Charting, 2002, 22(1):57-62.
[2] 许惠平,刘万崧,周云轩,等. 卫星测高重力资料及其在南海莺-琼盆地中的应用[J]. 吉林大学学报(地球科学版), 2003, 33(3):368-371. Xu Huiping, Liu Wansong, Zhou Yunxuan, et al. Altimetry Gravity and Its Applications in South China Sea[J]. Journal of Jilin University (Earth Science Edition), 2003, 33(3):368-371.
[3] 梁子亮,陈路,解琨,等. 利用多代卫星测高数据反演海洋重力异常及大地水准面[J]. 大地测量与地球动力学, 2015, 35(1):40-44. Liang Ziliang, Chen Lu, Xie Kun, et al. Inversion of Marine Gravity Anomalies and Geiod Using Muiti-Satellite Altimeter Data[J]. Journal of Geodesy and Geodynnamics, 2015, 35(1):40-44.
[4] 聂琳娟,吴云孙,金涛勇,等. 联合测高重力异常与ETOPO5海深数据求解南海海深模型[J]. 湖北民族学院学报(自然科学版), 2011, 29(2):157-160. Nie Linjuan, Wu Yunsun, Jin Taoyong, et al. Solution of the Ocean Depth Model for the South China Sea by Combining Gravity Altimetry and ETOPO5 Deep-Sea Data[J]. Journal of Hubei University for Nationalities (Natural Science Edition), 2011, 29(2):157-160.
[5] Calmant S, Baudry N. Modelling Bathymetry by Inverting Satellite Altimetry Data:A Review[J]. Marine Geophysical Research, 1996, 18(2):123-134.
[6] Hwang C. A Bathymetric Model for the South China Sea from Satellite Altimetry and Depth Data[J]. Marine Geodesy, 1999, 22(1):37-51.
[7] Kim K B, Hsiao Y S, Kim J W, et al. Bathymetry Enhancement by Altimetry-Derived Gravity Anomalies in the East Sea (Sea of Japan)[J]. Marine Geophysical Researches, 2010, 31(4):285-298.
[8] Kim J W, Frese R R B V, Bang Y L, et al. Altimetry-Derived Gravity Predictions of Bathymetry by the Gravity-Geologic Method[J]. Pure and Applied Geophysics, 2011, 168(5):815-826.
[9] Hsiao Y S, Kim J W, Kim K B, et al. Bathymetry Estimation Using the Gravity-Geologic Method:An Investigation of Density Contrast Predicted by the Downward Continuation Method[J]. Terrestrial Atmospheric & Oceanic Sciences, 2011, 22(3):347-358.
[10] Sandwell D T, Müller R D, Smith W H, et al. New Global Marine Gravity Model from Cryosat-2 and Jason-1 Reveals Buried Tectonic Structure[J]. Science, 2014, 346(6205):65.
[11] Parker R L. The Rapid Calculation of Potential Ano-malies[J]. Geophysical Journal International, 1973, 31(4):447-455.
[12] Watts A B. An Analysis of Isostasy in the World's Oceans:1. Hawaiian-Emperor Seamount Chain[J]. Journal of Geophysical Research Solid Earth, 1978, 83(B12):5989-6004.
[13] Smith W H F, Sandwell D T. Bathymetric Prediction from Dense Satellite Altimetry and Sparse Shipboard Bathymetry[J]. Journal of Geophysical Research Solid Earth, 1994, 99(B11):21803-21824.
[14] Braitenberg C, Pagot E, Wang Y, et al. Bathymetry and Crustal Thickness Variations from Gravity Inversion and Flexural Isostasy[M]. Berlin:Springer, 2003:143-149.
[15] 胡敏章,李建成,金涛勇. 应用重力地质方法反演皇帝海山的海底地形[J]. 武汉大学学报:信息科学版, 2012, 37(5):610-612, 629. Hu Minzhang, Li Jiancheng, Jin Taoyong. Bathymetry Inversion with Gravity-Geologic Method in Emperor Seamount[J]. Geomatics and Information Science of Wuhan University, 2012, 37(5):610-612, 629.
[16] 黄谟涛,翟国君,欧阳永忠,等. 卫星测高资料在反演海底地形中的应用[J]. 海洋测绘, 2002, 22(1):3-7. Huang Motao, Zhai Guojun, Ouyang Yongzhong, et al. On the Application of Altimeter Data to the Recovery of Bathymetry[J]. Hydrographic Surveying and Charting, 2002, 22(1):3-7.
[17] 欧阳明达,孙中苗,翟振和. 基于重力地质法的南中国海海底地形反演[J]. 地球物理学报, 2014, 57(9):2756-2765. Ouyang Mingda, Sun Zhongmiao, Zhai Zhenhe. Predicting Bathymetry in South China Sea Using the Gravity-Geologic Method[J]. Chinese Journal of Geophysics, 2014, 57(9):2756-2765.
[18] Hsiao Y S, Hwang C, Cheng Y S, et al. High-Resolution Depth and Coastline over Major Atolls of South China Sea from Satellite Altimetry and Imagery[J]. Remote Sensing of Environment, 2016, 176:69-83.
[19] 徐世浙. 迭代法与FFT法位场向下延拓效果的比较[J]. 地球物理学报, 2007, 50(1):285-289. Xu Shizhe. A Comparison of Effects Between the Iteration Method and FFT for Downward Continuation of Potential Fields[J]. Chinese Journal of Geophysics, 2007, 50(1):285-289.
[20] Schwarz K P, Sideris M G, Forsberg R. The Use of FFT Techniques in Physical Geodesy[J]. Geophysical Journal International, 1990, 100(3):485-514.
[21] 周波阳,罗志才,许闯,等. 航空重力数据向下延拓的FFT快速算法比较[J]. 大地测量与地球动力学, 2013, 33(1):64-68. Zhou Boyang, Luo Zhicai, Xu Chuang, et al. Comparison Among Fast Fourier Transform Algorithms for Downward Continuation of Airborne Gravity Data[J]. Journal of Geodesy and Geodynamics, 2013, 33(1):64-68.
[22] Fryer P, Becker N, Appelgate B, et al. Why is the Challenger Deep so Deep[J]. Earth & Planetary Science Letters, 2003, 211(3-4):259-269.
[23] Fujioka K, Okino K, Kanamatsu T, et al. Morp-hology and Origin of the Challenger Deep in the Southern Mariana Trench[J]. Geophysical Research Letters, 2002, 29(10):10-11.
[24] Amante C, Eakins B W. Etopo11 Arc-Minute Global Relief Model:Procedures, Data Sources and Analysis[J]. Psychologist, 2009, 16(3):20-25.
[25] Center N G D. Etopo2V22 Minute Worldwide Bathy-metry/Topography Grids|Ngdc.Noaa.Gov[EB/OL].[2017-04-15]. https://www.ngdc.noaa.gov/mgg/global/etopo2.html.
[26] Center N G D. Etopo5 Data and Documentation|Ngdc.Noaa.Gov.[EB/OL].[2017-04-15]. https://www.ngdc.noaa.gov/mgg/global/etopo5.html.
[27] Andersen O B, Jain M, Knudsen P. The Impact of Using Jason-1 and Cryosat-2 Geodetic Mission Altimetry for Gravity Field Modeling[M]. Cham:Springer International Publishing, 2016:205-210.
[1] 于德武, 龚胜平. 对迭代法位场向下延拓方法的剖析[J]. 吉林大学学报(地球科学版), 2015, 45(3): 934-940.
[2] 张志厚,吴乐园. 位场向下延拓的相关系数法[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1912-1919.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!