吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (6): 1821-1830.doi: 10.13278/j.cnki.jjuese.20180029
• 地质工程与环境工程 • 上一篇
洪梅1,2, 韩旭1,2, 王蔷3, 刘璐1,2, 史玉玺1,2
Hong Mei1,2, Han Xu1,2, Wang Qiang3, Liu Lu1,2, Shi Yuxi1,2
摘要: 硫化纳米铁(S-nZVI)是一种具有壳核结构的新型纳米铁(nZVI)改性材料,在多种污染物的去除上表现出超越nZVI的反应活性。本文采用两步合成法制备了S-nZVI,并采用透射电镜-能量色散X射线(TEM-EDX)、X射线衍射(XRD)和X射线光电子能谱分析(XPS)方法对S-nZVI和nZVI进行表征,探讨了不同硫铁摩尔比(n(S)/n(Fe))、初始pH值、试剂投加量和地下水化学成分对nZVI及S-nZVI去除Cr(Ⅵ)的影响。结果表明:S-nZVI具有明显的壳核结构,其Fe0核外层包覆着非晶的硫化亚铁和多硫化物;S-nZVI去除Cr(Ⅵ)的最佳n(S)/n(Fe)为0.14;增加S-nZVI投加量会提高其对Cr(Ⅵ)的去除率,投加量相同时,S-nZVI对Cr(Ⅵ)的去除率显著高于nZVI;提高初始pH值时,S-nZVI和nZVI对Cr(Ⅵ)的去除率均逐渐降低,但在相同pH值条件下,S-nZVI对Cr(Ⅵ)的去除率和去除速率始终高于nZVI,尤其是在pH=5时,S-nZVI仍能去除100%的Cr(Ⅵ),而nZVI只能去除85%;K+、Na+、Ca2+、Mg2+、SO42-、NO3-和Cl-对S-nZVI和nZVI去除Cr(Ⅵ)均有促进作用,但对S-nZVI体系的促进作用更强;HCO3-的存在会使溶液的pH值升高从而抑制S-nZVI和nZVI对Cr(Ⅵ)的去除,对nZVI的抑制作用强于S-nZVI。总体来说,S-nZVI对Cr(Ⅵ)的去除率在不同pH值和多种地下水化学组分影响条件下均高于nZVI,因此具有更广泛的应用前景。
中图分类号:
[1] Aber S, Amanighadim A R, Mirzajani V. Removal of Cr(Ⅵ) from Polluted Solutions by Electrocoagulation:Modeling of Experimental Results Using Artificial Neural Network[J]. Journal of Hazardous Materials, 2009, 171(1):484-490. [2] 董军, 徐暖, 刘同喆, 等. 乳化植物油强化土著微生物修复中高浓度Cr(Ⅵ)污染地下水[J].吉林大学学报(地球科学版),2018,48(1):234-240. Dong Jun, Xu Nuan, Liu Tongzhe, et al. Indigenous Microbial Remediation of Middle-High Concentration Cr(Ⅵ) Contaminated Groundwater Enhanced by Emulsified Vegetable Oil[J]. Journal of Jilin University (Earth Science Edition),2018,48(1):234-240. [3] Gheju M. Hexavalent Chromium Reduction with Zero-Valent Iron (ZVI) in Aquatic Systems[J]. Water, Air, & Soil Pollution, 2011, 222(1):103-148. [4] Li Y, Wang W, Zhou L, et al. Remediation of Hexavalent Chromium Spiked Soil by Using Synthesized Iron Sulfide Particles[J]. Chemosphere, 2017, 169(Sup. C):131-138. [5] Liu X, Dong H, Yang X, et al. Effects of Citrate on Hexavalent Chromium Reduction by Structural Fe(Ⅱ) in Nontronite[J]. Journal of Hazardous Materials, 2018, 343(Sup. C):245-254. [6] Hug S J, Laubscher H-U, James B R. Iron(Ⅲ) Catalyzed Photochemical Reduction of Chromium(Ⅵ) by Oxalate and Citrate in Aqueous Solutions[J]. Environmental Science & Technology, 1997, 31(1):160-170. [7] Tzou Y M, Wang S L, Wang M K. Fluorescent Light Induced Cr(Ⅵ) Reduction by Citrate in the Presence of TiO2 and Ferric Ions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2005, 253(1):15-22. [8] 宋世琨, 苏益明, 代朝猛,等. 纳米硫化铁在环境保护中的应用研究进展[J]. 化工进展, 2016, 35(1):248-254. Song Shikun, Su Yiming, Dai Chaomeng, et al. Recent Advances in the Application of Iron Sulfide Nanoparticles in Environment[J]. Chemical Industry and Engineering Progress, 2016, 35(1):248-254. [9] Rajajayavel S R C, Ghoshal S. Enhanced Reductive Dechlorination of Trichloroethylene by Sulfidated Nanoscale Zerovalent Iron[J]. Water Research, 2015, 78:144-153. [10] Kim E J, Kim J H, Aazd A M, et al. Facile Synthesis and Characterization of Fe/FeS Nanoparticles for Environmental Applications[J]. ACS Applied Materials & Interfaces, 2011, 3(5):1457-1462. [11] Han Y, Yan W. Reductive Dechlorination of Trichlo-roethene by Zero-Valent Iron Nanoparticles:Reactivity Enhancement Through Sulfidation Treatment[J]. Environmental Science & Technology, 2016, 50(23):12992-13001. [12] Fan D, O'Brien Johnson G, Tratnyek P G, et al. Sulfidation of Nano Zerovalent Iron (nZVI) for Improved Selectivity During In-Situ Chemical Reduction (ISCR)[J]. Environmental Science & Technology, 2016, 50(17):9558-9565. [13] Su Y, Adeleye A S, Keller A A, et al. Magnetic Sulfide-Modified Nanoscale Zerovalent Iron (S-nZVI) for Dissolved Metal Ion Removal[J]. Water Research, 2015, 74:47-57. [14] Li D, Mao Z, Zhong Y, et al. Reductive Transfor-mation of Tetrabromobisphenol A by Sulfidated Nano Zerovalent Iron[J]. Water Research, 2016, 103:1-9. [15] Li D, Zhu X, Zhong Y, et al. Abiotic Transformation of Hexabromocyclododecane by Sulfidated Nanoscale Zerovalent Iron:Kinetics, Mechanism and Influencing Factors[J]. Water Research, 2017, 121:140-149. [16] Cao Z, Liu X, Xu J, et al. Removal of Antibiotic Florfenicol by Sulfide-Modified Nanoscale Zero-Valent Iron[J]. Environmental Science & Technology, 2017, 51(19):11269-11277. [17] Crane R A, Scott T. The Removal of Uranium onto Carbon-Supported Nanoscale Zero-Valent Iron Particles[J]. Journal of Nanoparticle Research, 2014, 16(12):2813. [18] Gong Y, Gai L, Tang J, et al. Reduction of Cr(Ⅵ) in Simulated Groundwater by FeS-Coated Iron Magnetic Nanoparticles[J]. Science of the Total Environment, 2017, 595:743-751. [19] Li Y, Liang J, He X, et al. Kinetics and Mechanisms of Amorphous FeS2 Induced Cr(Ⅵ) Reduction[J]. Journal of Hazardous Materials, 2016, 320(Sup. C):216-225. [20] Zhu F, Li L, Ren W, et al. Effect of pH, Tem-perature, Humic Acid and Coexisting Anions on Reduction of Cr(Ⅵ) in the Soil Leachate by nZVI/Ni Bimetal Material[J]. Environmental Pollution, 2017, 227:444-450. [21] Lv X, Xu J, Jiang G, et al. Highly Active Nanoscale Zero-Valent Iron (nZVI)-Fe3O4 Nanocomposites for the Removal of Chromium(Ⅵ) from Aqueous Solutions[J]. Journal of Colloid and Interface Science, 2012, 369(1):460-469. [22] Fu R, Yang Y, Xu Z, et al. The Removal of Chro-mium (Ⅵ) and Lead(Ⅱ) from Groundwater Using Sepiolite-Supported Nanoscale Zero-Valent Iron (S-NZVI)[J]. Chemosphere, 2015, 138:726-734. [23] Grieger K D, Fjordb GE A, Hartmann N B, et al. Environmental Benefits and Risks of Zero-Valent Iron Nanoparticles (nZVI) for in Situ Remediation:Risk Mitigation or Trade-off[J]. Journal of Contaminant Hydrology, 2010, 118(3):165-183. [24] Li X Q, Zhang W X. Sequestration of Metal Cations with Zerovalent Iron Nanoparticles:A Study with High Resolution X-Ray Photoelectron Spectroscopy (HR-XPS)[J]. The Journal of Physical Chemistry C, 2007, 111(19):6939-6946. [25] Murphy R, Strongin D R. Surface Reactivity of Pyrite and Related Sulfides[J]. Surface Science Reports, 2009, 64(1):1-45. [26] Gong Y, Tang J, Zhao D. Application of Iron Sulfide Particles for Groundwater and Soil Remediation:A Review[J]. Water Research, 2016, 89(Sup. C):309-320. [27] Yu R F, Chi F H, Cheng W P, et al. Application of pH, ORP, and DO Monitoring to Evaluate Chromium(Ⅵ) Removal from Wastewater by the Nanoscale Zero-Valent Iron (nZVI) Process[J]. Chemical Engineering Journal, 2014, 255:568-576. [28] Breysse M, Furimsky E, Kasztelan S, et al. Hyd-rogen Activation by Transition Metal Sulfides[J]. Catalysis Reviews, 2002, 44(4):651-735. [29] Kantar C, Ari C, Keskin S, et al. Cr(Ⅵ) Removal from Aqueous Systems Using Pyrite as the Reducing Agent:Batch, Spectroscopic and Column Experiments[J]. Journal of Contaminant Hydrology, 2015, 174:28-38. [30] Zhang R, Sun H, Yin J. Arsenic and Chromate Re-moval from Water by Iron Chips:Effects of Anions[J]. Frontiers of Environmental Science & Engineering in China, 2008, 2(2):203-208. [31] Heuer J K, Stubbins J F. An XPS Characterization of FeCO3 Films from CO2 Corrosion[J]. Corrosion Science, 1999, 41(7):1231-1243. [32] Lv X, Hu Y, Tang J, et al. Effects of Co-Existing Ions and Natural Organic Matter on Removal of Chromium (Ⅵ) from Aqueous Solution by Nanoscale Zero Valent Iron (nZVI)-Fe3O4 Nanocomposites[J]. Chemical Engineering Journal, 2013, 218:55-64. |
[1] | 方晶, 王福, 方雨婷, 潘隆, 李杨, 胡克, 齐乌云, 王中良. 钻孔岩心黏土混浊水电导率、黄铁矿、pH相关性分析及其在古沉积环境复原的应用:以渤海湾西岸平原DC01孔为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1154-1164. |
[2] | 冯晅, 梁帅帅, 恩和得力海, 张明贺, 董泽君, 周皓秋, 齐嘉慧, 赵玮昌. 全极化探地雷达地下管道分类识别技术[J]. 吉林大学学报(地球科学版), 2018, 48(2): 364-372. |
[3] | 汤洁,梁爽,张豪,吴佳曦,娄云. 吉林西部盐碱水田区冻融期土壤水盐运移特征及酶活性变化[J]. 吉林大学学报(地球科学版), 2014, 44(2): 636-644. |
[4] | 岳碧波,彭真明, 张启衡. α稳定分布地震信号特征指数估计方法[J]. 吉林大学学报(地球科学版), 2013, 43(6): 2026-2034. |
[5] | 沈万斌,周楠楠,李一楠,郭志勇,李耀睿,花修艺,董德明. pH平面光极在生物扰动存在下水/沉积物体系中的应用[J]. 吉林大学学报(地球科学版), 2013, 43(3): 931-938. |
[6] | 李绪谦, 宋爽, 李红艳, 孙大志, 朴明月, 朱雅宁. 有机污染物(菲)在弱透水层中的越流迁移特征[J]. J4, 2011, 41(3): 840-846. |
[7] | 杨忠平, 卢文喜, 龙玉桥, 刘新荣. 长春市城区大气湿沉降中重金属及pH值调查[J]. J4, 2009, 39(5): 887-892. |
[8] | 丁爱中, 郝娜, 程莉蓉, 张丹, 谭文捷, 张礼中, 林学钰. 四川德阳浅层地下水高含铁成因分析[J]. J4, 2009, 39(5): 868-873. |
[9] | 任何军, 刘娜,高松,张兰英,张玉玲,周睿. 假单胞菌DN2对多氯联苯的降解及bphA1核心序列测定[J]. J4, 2009, 39(2): 312-0316. |
[10] | 肖国拾,来雅文,邹连春,陈博. 胶束增溶分光光度法测定环境水样中Cr(Ⅵ)[J]. J4, 2008, 38(5): 869-0872. |
[11] | 郭媛媛,杜显元,刘 亮,花修艺,董德明. 溶液pH对自然水体中多种固相介质吸附铅、镉、铜影响的比较[J]. J4, 2008, 38(3): 479-0483. |
[12] | 孙大志,李绪谦,商书波,潘晓峰. 张士灌区土壤中多环芳香烃菲(PHEs)的垂向分布与迁移[J]. J4, 2008, 38(2): 313-0318. |
[13] | 聂 熹. 两级SBR工艺除磷脱氮自动控制实验研究[J]. J4, 2007, 37(3): 611-0614. |
[14] | 孙革,苗雨雁,陈跃军. 新疆准噶尔盆地中侏罗世Sphenobaiera(楔拜拉)一新种[J]. J4, 2006, 36(05): 717-722. |
[15] | 张玉玲,张兰英,王显胜,王晓晖,高松. 出芽短梗霉吸附水体中共存Cr(Ⅵ)、Cd(Ⅱ)重金属离子研究[J]. J4, 2005, 35(03): 403-0406. |
|