吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (6): 1821-1830.doi: 10.13278/j.cnki.jjuese.20180029

• 地质工程与环境工程 • 上一篇    

硫化纳米铁对模拟地下水中Cr(Ⅵ)的去除效果及影响因素

洪梅1,2, 韩旭1,2, 王蔷3, 刘璐1,2, 史玉玺1,2   

  1. 1. 吉林大学新能源与环境学院, 长春 130021;
    2. 地下水资源与环境教育部重点实验室(吉林大学), 长春 130021;
    3. 水利部松辽水利委员会水文局, 长春 130021
  • 收稿日期:2018-02-05 发布日期:2018-11-26
  • 作者简介:洪梅(1972-),女,教授,博士生导师,主要从事污染场地控制与修复方面的研究,E-mail:hongmei@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41530636);吉林省科技发展计划项目(20150204045SF)

Removal Effect and Influencing Factors of Cr(Ⅵ) in Simulated Groundwater by Sulfidated Nanoscale Zerovalent Iron

Hong Mei1,2, Han Xu1,2, Wang Qiang3, Liu Lu1,2, Shi Yuxi1,2   

  1. 1. College of New Energy and Environment, Jilin University, Changchun 130021, China;
    2. Key Laboratory of Groundwater Resources and Environment(Jilin University), Ministry of Education, Changchun 130021, China;
    3. Bureau of Hydrology Songliao River Water Resources Commission, Changchun 130021, China
  • Received:2018-02-05 Published:2018-11-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41530636) and Science and Technology Development Plan of Jilin Province (20150204045SF)

摘要: 硫化纳米铁(S-nZVI)是一种具有壳核结构的新型纳米铁(nZVI)改性材料,在多种污染物的去除上表现出超越nZVI的反应活性。本文采用两步合成法制备了S-nZVI,并采用透射电镜-能量色散X射线(TEM-EDX)、X射线衍射(XRD)和X射线光电子能谱分析(XPS)方法对S-nZVI和nZVI进行表征,探讨了不同硫铁摩尔比(n(S)/n(Fe))、初始pH值、试剂投加量和地下水化学成分对nZVI及S-nZVI去除Cr(Ⅵ)的影响。结果表明:S-nZVI具有明显的壳核结构,其Fe0核外层包覆着非晶的硫化亚铁和多硫化物;S-nZVI去除Cr(Ⅵ)的最佳n(S)/n(Fe)为0.14;增加S-nZVI投加量会提高其对Cr(Ⅵ)的去除率,投加量相同时,S-nZVI对Cr(Ⅵ)的去除率显著高于nZVI;提高初始pH值时,S-nZVI和nZVI对Cr(Ⅵ)的去除率均逐渐降低,但在相同pH值条件下,S-nZVI对Cr(Ⅵ)的去除率和去除速率始终高于nZVI,尤其是在pH=5时,S-nZVI仍能去除100%的Cr(Ⅵ),而nZVI只能去除85%;K+、Na+、Ca2+、Mg2+、SO42-、NO3-和Cl-对S-nZVI和nZVI去除Cr(Ⅵ)均有促进作用,但对S-nZVI体系的促进作用更强;HCO3-的存在会使溶液的pH值升高从而抑制S-nZVI和nZVI对Cr(Ⅵ)的去除,对nZVI的抑制作用强于S-nZVI。总体来说,S-nZVI对Cr(Ⅵ)的去除率在不同pH值和多种地下水化学组分影响条件下均高于nZVI,因此具有更广泛的应用前景。

关键词: Cr(Ⅵ), 硫化纳米铁, 硫铁摩尔比, pH, 地下水化学组分

Abstract: Sulfidated nanoscale zerovalent iron (S-nZVI) is a new nZVI modified material with core-shell structure, and exhibits a higher reactivity towards various contaminants than nZVI. In this study, S-nZVI was synthesized by a two-step method. S-nZVI and nZVI were investigated by transmission electron microscope-energy dispersive X-ray spectroscopy (TEM-EDX), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The effects of n(S)/n(Fe), initial pH, reagent dosage and groundwater chemical composition on Cr(Ⅵ) removal by nZVI and S-nZVI were evaluated. The results showed that S-nZVI has obvious core-shell structure, and the core of Fe0 is coated with amorphous ferrous sulfide and polysulfide. The optimum n(S)/n(Fe) was 0.14 for the reaction between S-nZVI and Cr(Ⅵ). The increased dosage of S-nZVI enhanced Cr(Ⅵ) removal efficiency. With the same dosage, the Cr (VI) removal efficiency by S-nZVI was significantly higher than that by nZVI. When pH increased, the Cr(Ⅵ) removal efficiency by both S-nZVI and nZVI decreased gradually. But the efficiency and removal rate by S-nZVI were always higher than by nZVI under the same pH. Especially at pH=5, S-nZVI removed 100% of Cr(Ⅵ), whereas nZVI removed 85%. K+, Na+, Ca2+, Mg2+, SO42-, NO3-, and Cl- promoted Cr(Ⅵ) removal by both S-nZVI and nZVI, but more effectively in S-nZVI system. The presence of HCO3- increased the solution pH, and thus inhibited Cr(Ⅵ) removal more stronger in nZVI than S-nZVI systems. S-nZVI shows a higher efficiency of Cr(Ⅵ) removal than nZVI under the influence of various pH and groundwater chemical components, so it has a broader application prospect.

Key words: Cr(Ⅵ), S-nZVI, n(S)/n(Fe), pH, chemical composition of ground water

中图分类号: 

  • X523
[1] Aber S, Amanighadim A R, Mirzajani V. Removal of Cr(Ⅵ) from Polluted Solutions by Electrocoagulation:Modeling of Experimental Results Using Artificial Neural Network[J]. Journal of Hazardous Materials, 2009, 171(1):484-490.
[2] 董军, 徐暖, 刘同喆, 等. 乳化植物油强化土著微生物修复中高浓度Cr(Ⅵ)污染地下水[J].吉林大学学报(地球科学版),2018,48(1):234-240. Dong Jun, Xu Nuan, Liu Tongzhe, et al. Indigenous Microbial Remediation of Middle-High Concentration Cr(Ⅵ) Contaminated Groundwater Enhanced by Emulsified Vegetable Oil[J]. Journal of Jilin University (Earth Science Edition),2018,48(1):234-240.
[3] Gheju M. Hexavalent Chromium Reduction with Zero-Valent Iron (ZVI) in Aquatic Systems[J]. Water, Air, & Soil Pollution, 2011, 222(1):103-148.
[4] Li Y, Wang W, Zhou L, et al. Remediation of Hexavalent Chromium Spiked Soil by Using Synthesized Iron Sulfide Particles[J]. Chemosphere, 2017, 169(Sup. C):131-138.
[5] Liu X, Dong H, Yang X, et al. Effects of Citrate on Hexavalent Chromium Reduction by Structural Fe(Ⅱ) in Nontronite[J]. Journal of Hazardous Materials, 2018, 343(Sup. C):245-254.
[6] Hug S J, Laubscher H-U, James B R. Iron(Ⅲ) Catalyzed Photochemical Reduction of Chromium(Ⅵ) by Oxalate and Citrate in Aqueous Solutions[J]. Environmental Science & Technology, 1997, 31(1):160-170.
[7] Tzou Y M, Wang S L, Wang M K. Fluorescent Light Induced Cr(Ⅵ) Reduction by Citrate in the Presence of TiO2 and Ferric Ions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2005, 253(1):15-22.
[8] 宋世琨, 苏益明, 代朝猛,等. 纳米硫化铁在环境保护中的应用研究进展[J]. 化工进展, 2016, 35(1):248-254. Song Shikun, Su Yiming, Dai Chaomeng, et al. Recent Advances in the Application of Iron Sulfide Nanoparticles in Environment[J]. Chemical Industry and Engineering Progress, 2016, 35(1):248-254.
[9] Rajajayavel S R C, Ghoshal S. Enhanced Reductive Dechlorination of Trichloroethylene by Sulfidated Nanoscale Zerovalent Iron[J]. Water Research, 2015, 78:144-153.
[10] Kim E J, Kim J H, Aazd A M, et al. Facile Synthesis and Characterization of Fe/FeS Nanoparticles for Environmental Applications[J]. ACS Applied Materials & Interfaces, 2011, 3(5):1457-1462.
[11] Han Y, Yan W. Reductive Dechlorination of Trichlo-roethene by Zero-Valent Iron Nanoparticles:Reactivity Enhancement Through Sulfidation Treatment[J]. Environmental Science & Technology, 2016, 50(23):12992-13001.
[12] Fan D, O'Brien Johnson G, Tratnyek P G, et al. Sulfidation of Nano Zerovalent Iron (nZVI) for Improved Selectivity During In-Situ Chemical Reduction (ISCR)[J]. Environmental Science & Technology, 2016, 50(17):9558-9565.
[13] Su Y, Adeleye A S, Keller A A, et al. Magnetic Sulfide-Modified Nanoscale Zerovalent Iron (S-nZVI) for Dissolved Metal Ion Removal[J]. Water Research, 2015, 74:47-57.
[14] Li D, Mao Z, Zhong Y, et al. Reductive Transfor-mation of Tetrabromobisphenol A by Sulfidated Nano Zerovalent Iron[J]. Water Research, 2016, 103:1-9.
[15] Li D, Zhu X, Zhong Y, et al. Abiotic Transformation of Hexabromocyclododecane by Sulfidated Nanoscale Zerovalent Iron:Kinetics, Mechanism and Influencing Factors[J]. Water Research, 2017, 121:140-149.
[16] Cao Z, Liu X, Xu J, et al. Removal of Antibiotic Florfenicol by Sulfide-Modified Nanoscale Zero-Valent Iron[J]. Environmental Science & Technology, 2017, 51(19):11269-11277.
[17] Crane R A, Scott T. The Removal of Uranium onto Carbon-Supported Nanoscale Zero-Valent Iron Particles[J]. Journal of Nanoparticle Research, 2014, 16(12):2813.
[18] Gong Y, Gai L, Tang J, et al. Reduction of Cr(Ⅵ) in Simulated Groundwater by FeS-Coated Iron Magnetic Nanoparticles[J]. Science of the Total Environment, 2017, 595:743-751.
[19] Li Y, Liang J, He X, et al. Kinetics and Mechanisms of Amorphous FeS2 Induced Cr(Ⅵ) Reduction[J]. Journal of Hazardous Materials, 2016, 320(Sup. C):216-225.
[20] Zhu F, Li L, Ren W, et al. Effect of pH, Tem-perature, Humic Acid and Coexisting Anions on Reduction of Cr(Ⅵ) in the Soil Leachate by nZVI/Ni Bimetal Material[J]. Environmental Pollution, 2017, 227:444-450.
[21] Lv X, Xu J, Jiang G, et al. Highly Active Nanoscale Zero-Valent Iron (nZVI)-Fe3O4 Nanocomposites for the Removal of Chromium(Ⅵ) from Aqueous Solutions[J]. Journal of Colloid and Interface Science, 2012, 369(1):460-469.
[22] Fu R, Yang Y, Xu Z, et al. The Removal of Chro-mium (Ⅵ) and Lead(Ⅱ) from Groundwater Using Sepiolite-Supported Nanoscale Zero-Valent Iron (S-NZVI)[J]. Chemosphere, 2015, 138:726-734.
[23] Grieger K D, Fjordb GE A, Hartmann N B, et al. Environmental Benefits and Risks of Zero-Valent Iron Nanoparticles (nZVI) for in Situ Remediation:Risk Mitigation or Trade-off[J]. Journal of Contaminant Hydrology, 2010, 118(3):165-183.
[24] Li X Q, Zhang W X. Sequestration of Metal Cations with Zerovalent Iron Nanoparticles:A Study with High Resolution X-Ray Photoelectron Spectroscopy (HR-XPS)[J]. The Journal of Physical Chemistry C, 2007, 111(19):6939-6946.
[25] Murphy R, Strongin D R. Surface Reactivity of Pyrite and Related Sulfides[J]. Surface Science Reports, 2009, 64(1):1-45.
[26] Gong Y, Tang J, Zhao D. Application of Iron Sulfide Particles for Groundwater and Soil Remediation:A Review[J]. Water Research, 2016, 89(Sup. C):309-320.
[27] Yu R F, Chi F H, Cheng W P, et al. Application of pH, ORP, and DO Monitoring to Evaluate Chromium(Ⅵ) Removal from Wastewater by the Nanoscale Zero-Valent Iron (nZVI) Process[J]. Chemical Engineering Journal, 2014, 255:568-576.
[28] Breysse M, Furimsky E, Kasztelan S, et al. Hyd-rogen Activation by Transition Metal Sulfides[J]. Catalysis Reviews, 2002, 44(4):651-735.
[29] Kantar C, Ari C, Keskin S, et al. Cr(Ⅵ) Removal from Aqueous Systems Using Pyrite as the Reducing Agent:Batch, Spectroscopic and Column Experiments[J]. Journal of Contaminant Hydrology, 2015, 174:28-38.
[30] Zhang R, Sun H, Yin J. Arsenic and Chromate Re-moval from Water by Iron Chips:Effects of Anions[J]. Frontiers of Environmental Science & Engineering in China, 2008, 2(2):203-208.
[31] Heuer J K, Stubbins J F. An XPS Characterization of FeCO3 Films from CO2 Corrosion[J]. Corrosion Science, 1999, 41(7):1231-1243.
[32] Lv X, Hu Y, Tang J, et al. Effects of Co-Existing Ions and Natural Organic Matter on Removal of Chromium (Ⅵ) from Aqueous Solution by Nanoscale Zero Valent Iron (nZVI)-Fe3O4 Nanocomposites[J]. Chemical Engineering Journal, 2013, 218:55-64.
[1] 方晶, 王福, 方雨婷, 潘隆, 李杨, 胡克, 齐乌云, 王中良. 钻孔岩心黏土混浊水电导率、黄铁矿、pH相关性分析及其在古沉积环境复原的应用:以渤海湾西岸平原DC01孔为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1154-1164.
[2] 冯晅, 梁帅帅, 恩和得力海, 张明贺, 董泽君, 周皓秋, 齐嘉慧, 赵玮昌. 全极化探地雷达地下管道分类识别技术[J]. 吉林大学学报(地球科学版), 2018, 48(2): 364-372.
[3] 汤洁,梁爽,张豪,吴佳曦,娄云. 吉林西部盐碱水田区冻融期土壤水盐运移特征及酶活性变化[J]. 吉林大学学报(地球科学版), 2014, 44(2): 636-644.
[4] 岳碧波,彭真明, 张启衡. α稳定分布地震信号特征指数估计方法[J]. 吉林大学学报(地球科学版), 2013, 43(6): 2026-2034.
[5] 沈万斌,周楠楠,李一楠,郭志勇,李耀睿,花修艺,董德明. pH平面光极在生物扰动存在下水/沉积物体系中的应用[J]. 吉林大学学报(地球科学版), 2013, 43(3): 931-938.
[6] 李绪谦, 宋爽, 李红艳, 孙大志, 朴明月, 朱雅宁. 有机污染物(菲)在弱透水层中的越流迁移特征[J]. J4, 2011, 41(3): 840-846.
[7] 杨忠平, 卢文喜, 龙玉桥, 刘新荣. 长春市城区大气湿沉降中重金属及pH值调查[J]. J4, 2009, 39(5): 887-892.
[8] 丁爱中, 郝娜, 程莉蓉, 张丹, 谭文捷, 张礼中, 林学钰. 四川德阳浅层地下水高含铁成因分析[J]. J4, 2009, 39(5): 868-873.
[9] 任何军, 刘娜,高松,张兰英,张玉玲,周睿. 假单胞菌DN2对多氯联苯的降解及bphA1核心序列测定[J]. J4, 2009, 39(2): 312-0316.
[10] 肖国拾,来雅文,邹连春,陈博. 胶束增溶分光光度法测定环境水样中Cr(Ⅵ)[J]. J4, 2008, 38(5): 869-0872.
[11] 郭媛媛,杜显元,刘 亮,花修艺,董德明. 溶液pH对自然水体中多种固相介质吸附铅、镉、铜影响的比较[J]. J4, 2008, 38(3): 479-0483.
[12] 孙大志,李绪谦,商书波,潘晓峰. 张士灌区土壤中多环芳香烃菲(PHEs)的垂向分布与迁移[J]. J4, 2008, 38(2): 313-0318.
[13] 聂 熹. 两级SBR工艺除磷脱氮自动控制实验研究[J]. J4, 2007, 37(3): 611-0614.
[14] 孙革,苗雨雁,陈跃军. 新疆准噶尔盆地中侏罗世Sphenobaiera(楔拜拉)一新种[J]. J4, 2006, 36(05): 717-722.
[15] 张玉玲,张兰英,王显胜,王晓晖,高松. 出芽短梗霉吸附水体中共存Cr(Ⅵ)、Cd(Ⅱ)重金属离子研究[J]. J4, 2005, 35(03): 403-0406.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!