吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (4): 1154-1164.doi: 10.13278/j.cnki.jjuese.20170046

• 地质与资源 • 上一篇    下一篇

钻孔岩心黏土混浊水电导率、黄铁矿、pH相关性分析及其在古沉积环境复原的应用:以渤海湾西岸平原DC01孔为例

方晶1, 王福2, 方雨婷3, 潘隆1, 李杨1, 胡克4, 齐乌云5, 王中良6   

  1. 1. 天津师范大学地理与环境科学学院, 天津 300378;
    2. 中国地质调查局天津地质调查中心, 天津 300170;
    3. 日本名古屋大学环境学研究科, 名古屋 464-8601;
    4. 中国地质大学(北京)海洋学院, 北京 100083;
    5. 中国社会科学院考古研究所, 北京 100710;
    6. 天津师范大学水资源与水环境重点实验室, 天津 300387
  • 收稿日期:2017-11-07 出版日期:2018-07-26 发布日期:2018-07-26
  • 通讯作者: 王福(1979-),男,研究员,博士,主要从事海岸带与第四纪地质环境研究,E-mail:wfu@cgs.cn E-mail:wfu@cgs.cn
  • 作者简介:方晶(1963-),男,副教授,博士,主要从事海岸带全新世环境演变的研究,E-mail:mdfangjing@163.com
  • 基金资助:
    国家自然科学基金项目(41476074);中国地质调查局项目(121201006000182401);天津师范大学博士基金(52XB1207);天津市高等学校创新团队培养计划项目(TD12-5073)

Correlation Analysis of Conductivity (EC), w(FeS2), pH of Drilled Clay Water and Its Application in Paleo-Environment Restoration: A Case Study of DC01 Core on West Plain of Bohai Bay

Fang Jing1, Wang Fu2, Fang Yuting3, Pan Long1, Li Yang1, Hu Ke4, Qi Wuyun5, Wang Zhongliang6   

  1. 1. College of Geography and Environmental Science, Tianjin Normal University, Tianjin 300387, China;
    2. Tianjin Center, China Geological Survey, Tianjin 300170, China;
    3. Graduated School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan;
    4. School of Ocean Sciences, China University of Geosciences, Beijing 100083, China;
    5. Institute of Archaeology, Chinese Academy of Social Sciences, Beijing 100710, China;
    6. Tianjin Key Laboratory of Water Environment and Resources, Tianjin Normal University, Tianjin 300387, China
  • Received:2017-11-07 Online:2018-07-26 Published:2018-07-26
  • Supported by:
    Supported by National Natural Science Foundation of China(41476074),Project of China Geological Survey(121201006000182401),Doctoral Fund of Tianjin Normal University(52XB1207) and Innovation Team Training Plan of Tianjin Education Committee (TD13-5073)

摘要: 为探讨复原海岸平原沉积环境和精确划分海陆相地层的有效方法,对渤海湾西岸海河以南平原深达30 m的DC01孔岩心以约20 cm间距取样,测试黏土混浊水电导率(EC)、黄铁矿质量分数(w(FeS2))和pH值,并开展相关分析研究。结果显示,ECw(FeS2)正相关(相关系数r为0.47),而EC与pH以及w(FeS2)与pH均负相关(r分别为-0.43和-0.52)。根据EC值的大小将DC01孔自下至上分成5个带(Ⅰ—Ⅴ),进一步分别对5个带的ECw(FeS2)及pH做相关分析,结果显示,Ⅱ带相关性最为突出:ECw(FeS2)的相关系数为0.83,极强正相关;EC与pH的相关系数为-0.77,强负相关;w(FeS2)与pH的相关系数为-0.45,呈中等程度负相关。根据Ⅱ带的ECw(FeS2)极强正相关、且ECw(FeS2)均明显偏高以及多发育黑色泥炭和腐殖质黏土等特征,推断Ⅱ带为受海水影响的盐沼环境;结合AMS14C测年结果,推测8 260~7 470 cal.B.P.期间,海水曾经影响到DC01孔的位置。另外,Ⅳ带的EC值也偏高,但w(FeS2)却较低,其ECw(FeS2)的相关系数为-0.03,不呈正相关关系,其原因是因为接近地表的上部沉积物因淋溶作用,在Ⅳ带形成淀积层导致EC异常偏高;最上层的Ⅴ带为淋溶层,这样就导致钻孔上部(深6.7 m以上)Ⅳ带和Ⅴ带ECw(FeS2)的相关性出现异常。因此在讨论沉积物上部沉积环境时,将ECw(FeS2)综合分析可以更精确地划分钻孔岩心的沉积环境。

关键词: 渤海湾西岸平原, 黏土混浊水电导率, 黄铁矿质量分数, pH, 相关分析, 沉积环境

Abstract: In order to explore the effective method for the reconstruction of the ancient environment of coastal plains and accurately divide the marine and continental stratum, the core DC01(30 m depth) was taken from the south of the Haihe River in the west plain of the Bohai Bay,and sampled at intervals of 20 cm;The electric conductivity (EC), w(FeS2) and pH were measured, and the correlations between EC and pH, w(FeS2) and pH were analyzed. The results show that EC is positively correlated with w(FeS2) (r=0.47), while EC is negatively correlated with pH, and so is w (FeS2) (r=-0.43 and -0.52, respectively). According to the EC value, the core DC01 was divided into five bands from bottom to top, and the correlations between EC, w(FeS2) and pH were further analyzed. The results show that the correlation of band Ⅱ is most obvious, and its EC is positively correlated with w(FeS2) (r=0.83), but strongly negatively correlated with pH(r=-0.77), while w(FeS2) is moderately negatively correlated with pH (r=-0.45). According to the strong positive correlation between EC and w(FeS2), the high EC, w(FeS2) and abundant black peat and humus clay, we can infer that the band Ⅱ was developed in a salt marsh environment close to the seawater. Combined with the AMS14C dating result, seawater once affected this position during the period of 8 260-7 470 cal. B. P. In band Ⅳ, the EC is high, but w(FeS2) is very low, and the correlation between EC and w(FeS2) is negative(r=-0.03), such a pattern was caused by the leaching effect of the upper surface sediments. The uppermost band Ⅴ(6.7 m on top) is a leaching layer, therefore its correlation between EC and w(FeS2) is abnormal. Obviously, a comprehensive analysis of EC and w(FeS2) can give a more reliable result for the discussion of the upper sedimentary environment of a drilling core.

Key words: coastal lowland of west Bohai bay, caly-water electric conductivity, pyrite content, pH, correlation analysis, sedimentary environment

中图分类号: 

  • P736.2
[1] 王福,李建芬,陈永胜,等. QX01孔记录的渤海湾西岸沿海低地MIS3晚期以来的河道充填与环境演化[J]. 地学前缘,2016,23(4):301-309. Wang Fu, Li Jianfen, Chen Yongsheng, et al. Paleo-Environment Change and River Channel Infilling Since MIS3 Recorded by Drilling Core QX01 Taken from the Coastal Lowland of Bohai Bay[J]. Earth Science Frontiers,2016,23(4):301-309.
[2] 陈永胜,王宏,裴艳东,等. 渤海湾西岸晚第四纪海相地层划分及地质意义[J]. 吉林大学学报(地球科学版),2012,42(2):747-759. Chen Yongsheng, Wang Hong, Pei Yandong, et al. Division and Its Geological Significannce of the Late Quaternary Marine Sedimentary Beds in the West Coast of Bohai Bay, China[J]. Journal of Jilin University (Earth Science Edition),2012,42(2):747-759.
[3] 陈永胜,李建芬,王福,等. 渤海湾西岸现代岸线钻孔记录的全新世沉积环境与相对海面变化[J].吉林大学学报(地球科学版),2016,46(2):499-517. Chen Yongsheng, Li Jianfen, Wang Fu, et al. Records of Holocene Sedimentation Environment and Relative Sea Level by the Boreholes Collected Along the Present Shoreline of the West Coast of Bohai Bay, China[J]. Journal of Jilin University (Earth Science Edition), 2016,46(2):499-517.
[4] 方晶,杨永强,商志文,等. 硅藻Auliscus caelatus对渤海湾西北岸大吴庄埋藏牡蛎礁形成环境的复原[J].吉林大学学报(地球科学版),2012,42(增刊2):343-351. Fang Jing, Yang Yongqiang, Shang Zhiwen, et al. Reconstruction of the Environment by Auliscus caelatus in Dawuzhuang Buried Oyster Reef on Northwest Coast of Bohai Bay[J]. Journal of Jilin University (Earth Science Edition),2012,42(Sup.2):343-351.
[5] 方晶,王宏,王福,等. 渤海湾西北岸埋藏牡蛎礁礁顶上下沉积物中硅藻对"礁泥转换"古沉积环境的重建[J].沉积学报,2012,30(5):879-890. Fang Jing, Wang Hong, Wang Fu, et al. Diatom Analysis in the Top and Bottom Muddy Sediments of Buried Oyster Reef for the Reef-Mud Conversion Palaeoenvironmental Reconstruction, Northwest Bohai Bay[J]. Acta Sedimentologica Sinica,2012,30(5):879-890.
[6] 佐藤万寿美,横山卓雄. 黏土混濁水の電気伝導度による古環境の推定~関西国際空港ボーリング·コアの場合[J].地质学杂志,1992,98(9):825-839. Sato M, Yokoyama T. Analysis of Paleo-Environment Based on Electric Conductivity of the STICS-Water:On Two Drilled Cores at Osaka Bay, Japan[J]. The Geological Society of Japan, 1992,98(9):825-839.
[7] 内園立男,森勇一. 濃尾平野南部ボ-リングコアの粘土混浊水の電気伝導度およびpH測定に基づく堆積環境の推定[J]. 第四纪研究,2004,43(5):375-382. Uchizono T, Mori Y. Sedimentary Environmental Analysis Based on Electric Conductivity and pH of Stirred Clayer Drilling Cores into Water Recovered from the Southern Part of Nobi Plain Central Japan[J]. The Quaternary Research, 2004,43(5):375-382.
[8] 白神宏.FeS2含有量からみた広島平野沖積層の堆積構造[J]. 地理学评论,1985,58(10):631-644. Shirakami H. the Structure of Alluvial Formations Deduced from FeS2 Contents of Cored Sediments Taken from Hiroshima Plain[J]. The Association of Japanese Geographers,1985,58(10):631-644.
[9] 方晶,李应硕,介冬梅,等. 黏土混浊水导电率在海陆变迁研究上的应用:以下辽河平原为例[J]. 第四纪研究,2006,26(3):493-494. Fang Jing, Li Yingshuo, Jie Dongmei, et al. Application of Clayey Water Electric Conductivity Recovered from the Sea-Land Changes:A Case Study in Xialiao River plain[J]. Quaternary Sciences, 2006,26(3):493-494.
[10] 方晶,武亚芳,李瑞武,等.辽宁沿海早、中期全新世海进中的一次海退事件[J]. 地学前缘,2009,16(2):376-403. Fang Jing, Wu Yafang, Li Ruiwu, et al. Discussion on Marine Regression Event during the Early-Middle Holocene in the Liaoning Coast[J]. Earth Science Frontiers, 2009,16(2):376-403.
[11] 方晶,范昌福,王海峰,等.黏土混浊水EC对牡蛎礁水平夹层成因的解释:以渤海湾西北岸大吴庄牡蛎礁为例[J].第四纪研究,2011,31(4):746-748. Fang Jing, Fan Changfu, Wang Haifeng, et al. Application of Clayey Water Electric Conductivity Recovered from Origins of Horizontal Interlayers in the Buried Oyster Reef:A Case Study of the Dawuzhuang Oyster Reef in the Northwest of Bohai Bay[J].Quaternary Sciences, 2011,31(4):746-748.
[12] 横山卓雄. 电气传导度测定法[M]//日本第四纪学会.第四纪试料分析法:2.东京:东京大学出版会,1993:109-118. Yokoyama T. Mensuration of Electric Conductivity[M]//Japan Association for Quaternary Researched. A Handbook of Quaternary Research:2. Tokyo:University of Tokyo Press,1993:109-118.
[13] Berner R A.Sedimentary Pyrite Formation[J]. Amer Jour Sci,1970,268:1-23.
[14] 中井信之,太田友子,藤沢寛,等.堆積物コアの炭素同位体比,C/N比およびFeS2含有量からみた名古屋港周辺の古気候,古海水準変動[J].第四纪研究,1982,21(3):169-177. Nakai N, Ohta T, Fujisawa H, et al. Paleoclimatic and Sea-Level Changes Deduced from Organic Carbon Isotope Ratios,C/N Ratios and Pyrite Contents of Cored Sediments from Nagoya Harbor, Japan[J]. The Quaternary Research,1982,21(3):169-177.
[15] 李世瑜.古代渤海湾西部海岸遗迹及地下文物的初步调查研究[J]. 考古,1962,11(12):652-657. Li Shiyu. Preliminary Study on Relics of Coast and Culture in the West Coast of Bohai Bay[J]. Acta Archaeology Sinica, 1962,11(12):652-657.
[16] 赵希涛,张景文,焦文强,等. 渤海湾西岸的贝壳堤[J]. 科学通报,1980,25(6):279-281. Zhao Xitao, Zhang Jingwen, Jiao Wenqiang, et al. Chenier Ridge on the West Coast of Bohai Sea[J]. Chinese Science Bulletin, 1980, 25(6):279-281.
[17] 苏盛伟. 渤海湾西岸全新世贝壳堤古环境重建[D].长春:吉林大学,2012:1-79. Su Shengwei. Palaeoenvironmental Reconstruction of the Holocene Cheniers in West Coast of Bohai Bay[D].Changchun:Jilin University, 2012:1-79.
[18] Reimer P J, Bard E, Bayliss A,et al. IntCal13 and MARINE13 Radiocarbon Age Calibration Curves 0-50000 Years cal. B. P.[J]. Radiocarbon,2013,55(4):1869-1887.
[19] Stuiver M, Braziunas T. Modelling Atmospheric 14C Influences and 14C Ages of Marine Samples to 10000 BC[J]. Radiocarbon,1993,35:137-189.
[20] Kellogg W W, Cadle R D, Allen E R, el al. The Sulfur Cycle[J]. Science,1972,175:587-596.
[21] Goldman C R, Horne A J.Limnology[M]. New York:Mc Graw-Hill,1983:464.
[22] 方晶,杨永强,马宏伟,等. 辽东半岛大孤山古溺谷平原沉积环境的复原:基于岩心黏土混浊水电导率和pH值以及硅藻组合[J]. 海洋学报,2012,34(6):133-141. Fang Jing, Yang Yongqiang, Ma Hongwei, et al. Edimentary Environmental Analysis Based on Electric Conductivity and pH of Stirred Clayed Drilling Cores in Water and Diatom Recovered from the of Old Drowned Valley Plain in the Dagu Mountain, Liaodong Peninsula in China[J]. Acta Oceanologica Sinica,2012,34(6):133-141.
[1] 冯晅, 梁帅帅, 恩和得力海, 张明贺, 董泽君, 周皓秋, 齐嘉慧, 赵玮昌. 全极化探地雷达地下管道分类识别技术[J]. 吉林大学学报(地球科学版), 2018, 48(2): 364-372.
[2] 田敏, 董春梅, 林承焰, 柴小颖, 王丽娟. 柴达木盆地涩北二号生物气田砂体产能分类评价[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1060-1069.
[3] 牛君, 黄文辉, 丁文龙, 蒋文龙, 张亚美, 漆立新, 云露, 吕海涛. 麦盖提斜坡奥陶系碳酸盐岩碳氧同位素特征及其意义[J]. 吉林大学学报(地球科学版), 2017, 47(1): 61-73.
[4] 陈永胜, 李建芬, 王福, 田立柱, 商志文, 施佩歆, 姜兴钰, 王宏. 渤海湾西岸现代岸线钻孔记录的全新世沉积环境与相对海面变化[J]. 吉林大学学报(地球科学版), 2016, 46(2): 499-517.
[5] 赵晓东, 胡昌松, 凌小明, 李军敏. 重庆南川-武隆铝土矿含矿岩系稀土元素特征及其地质意义[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1691-1701.
[6] 徐波, 唐铁柱, 李辰. 鄂尔多斯盆地中东部马五段碳酸盐岩气藏富气主控因素—以陕200井区为例[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1299-1309.
[7] 郑玉龙, 陈春瑞, 王佰长, 王占国, 刘胜英, 吴相梅. 松辽盆地北部油页岩资源潜力评价[J]. 吉林大学学报(地球科学版), 2015, 45(3): 683-690.
[8] 谭思哲, 高顺莉, 葛和平, 付焱鑫. 南黄海盆地二叠系烃源岩孢粉相特征及其形成环境[J]. 吉林大学学报(地球科学版), 2015, 45(3): 691-700.
[9] 徐文礼,郑荣才,颜雪,文华国,崔璀. 下扬子地区早古生代黑色岩系地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1108-1122.
[10] 王大鹏,张乾,郭国林,蔡伊. 湖南麻阳砂岩自然铜矿床元素地球化学及其成因意义[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1177-1187.
[11] 汤洁,梁爽,张豪,吴佳曦,娄云. 吉林西部盐碱水田区冻融期土壤水盐运移特征及酶活性变化[J]. 吉林大学学报(地球科学版), 2014, 44(2): 636-644.
[12] 李小平,杜家元,丁琳,刘军,陈维涛,陈淑慧,龙更生,王湘蜀. 硬石膏-褐铁矿-高岭石-白云石矿物序列成因及古气候意义:以珠江口盆地东部LH-3井珠江组为例[J]. 吉林大学学报(地球科学版), 2014, 44(1): 213-221.
[13] 岳碧波,彭真明, 张启衡. α稳定分布地震信号特征指数估计方法[J]. 吉林大学学报(地球科学版), 2013, 43(6): 2026-2034.
[14] 王春连,刘成林,徐海明,王立成,沈立建. 湖北江陵凹陷古新统沙市组四段硫酸盐硫同位素组成及其地质意义[J]. 吉林大学学报(地球科学版), 2013, 43(3): 691-703.
[15] 沈万斌,周楠楠,李一楠,郭志勇,李耀睿,花修艺,董德明. pH平面光极在生物扰动存在下水/沉积物体系中的应用[J]. 吉林大学学报(地球科学版), 2013, 43(3): 931-938.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!