吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (4): 1015-1038.doi: 10.13278/j.cnki.jjuese.20180014

• 地质与资源 • 上一篇    下一篇

伊犁地块北缘早古生代构造属性:来自温泉地区闪长岩的证据

贾莹刚1,2, 赵军2, 蒋磊2, 关力伟2, 王小玄1, 何亮1,2   

  1. 1. 中国地质大学(北京)地球科学与资源学院, 北京 100083;
    2. 中国人民武装警察部队黄金第八支队(中国地质调查局乌鲁木齐自然资源综合调查中心), 乌鲁木齐 830057
  • 收稿日期:2018-01-18 出版日期:2019-07-26 发布日期:2019-07-26
  • 通讯作者: 赵军(1978-),男,工程师,博士,主要从事区域地质调查和矿产资源勘查方面的研究,E-mail:414910949@qq.com E-mail:414910949@qq.com
  • 作者简介:贾莹刚(1990-),男,硕士研究生,主要从事矿物学、岩石学、矿床学方面的研究,E-mail:446459958@qq.com
  • 基金资助:
    中国地质调查局地质调查项目(12120115041301)

Early Paleozoic Tectonic Evolution of Northern Yili Block: Evidence from Diorite in Wenquan, Xinjiang

Jia Yinggang1,2, Zhao Jun2, Jiang Lei2, Guan Liwei2, Wang Xiaoxuan1, He Liang1,2   

  1. 1. School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China;
    2. No.8 Gold Geological Party, CAPF(Center of Urumqi Natural Resources Comprehensive Survey, CGS), Urumqi 830057, China
  • Received:2018-01-18 Online:2019-07-26 Published:2019-07-26
  • Supported by:
    Supported by Geological Survey Projects of China Geological Survey (DD12120115041301)

摘要: 温泉地区位于伊犁地块与哈萨克斯坦板块结合部位,广泛发育早古生代侵入岩,侵入岩带对探究伊犁地块北缘早古生代构造背景及洋陆演化具有重要意义。在野外地质填图和岩相学观察基础上,对温泉地区奥陶纪闪长岩开展了系统的锆石U-Pb年代学、Hf同位素和地球化学研究。年代学表明,石英闪长岩3个样品锆石U-Pb加权平均年龄分别为(467.7±5.4)、(457.1±3.9)和(455.4±5.0)Ma,表明其结晶时间从中奥陶世一直持续到晚奥陶世早期。地球化学成分显示,闪长岩SiO2质量分数(50.19%~61.91%,平均56.57%)、TiO2质量分数(0.84%~1.13%,平均1.01%)较低,MgO质量分数(2.36%~8.17%,平均4.60%)、CaO质量分数(3.94%~9.45%,平均6.50%)和全碱质量分数(3.74%~7.06%,平均5.41%)相对较高,并具有高的Na2O/K2O值(1.42~4.90,平均2.76),以及低的A/CNK值(0.70~0.95,平均0.84),为准铝质岩石。微量元素地球化学显示闪长岩富集大离子亲石元素(K、Rb等),亏损高场强元素(Ta、Nb、Ti等);球粒陨石标准化稀土元素分布模式表现为"左陡右缓"的变化趋势,Eu显示弱的负异常(δEu=0.67~1.12,平均值0.90),重稀土元素质量分数较低,具有大陆边缘弧火成岩地球化学特征。Harker二元图解表明,岩浆演化过程中发生了分离结晶作用,存在于岩体中的地层捕虏体显示其经历了一定的地壳混染。两件石英闪长岩样品具有相近的Hf同位素组成:εHft)值为3.9~7.0,两阶段模式年龄(TDM2)为991~1 191 Ma(平均1 083 Ma),远远大于锆石U-Pb年龄。以上特征表明亏损地幔在闪长岩源区占主导地位,并有早期大洋板片流体交代的富集岩石圈地幔组分的混入。综合地质资料和前人研究成果,推测区内闪长岩形成时的动力可能与准噶尔洋奥陶纪持续向南俯冲有关,洋盆最终于晚奥陶世-早志留世闭合。

关键词: 锆石U-Pb年龄, Hf同位素, 闪长岩, 早古生代, 伊犁地块

Abstract: Located at the junction of Yili block and Siberia plate, the northern Yili block develops a belt of Early Paleozoic intrusive rocks, which are the key to study the northern Yili block tectonic setting and evolution of the old Junggar Ocean. On the basis of a field geological survey and petrographic observation, we present the whole-rock data, U-Pb ages and Hf isotopic data for the Early Paleozoic diorite from Wenquan of northern edge of Yili block. The weighted mean 206Pb/238U ages of the zircons from quartz diorite are(467.7±5.4)Ma,(457.1±3.9) Ma and(455.4±5.0) Ma, indicating that these diorite bodies crystallized from the Early Ordovician to the Middle Ordovician. The petrological and chemical composition show that these diorites are characterized by low SiO2 (50.19%-61.91%, average 56.57%) and TiO2 (0.84%-1.13%, average 1.01%), slightly higher MgO (2.36%-8.17%, average 4.60%), CaO (3.94%-9.45%, average 6.50%), total alkali (Na2O+K2O) (3.74%-7.06%, average 5.41%). The ratio of Na2O/K2O is high (1.42-4.90, average 2.76), while the ratio of A/CNK is low (0.70-0.95, average 0.84). The geochemical data suggest that these diorite bodies belong to quasia-luminous series. The diorites are enriched in large ion lithophile elements (K,Rb), but depleted of high field strength elements (Ta, Nb, Ti). The REE pattern shows a trend of "left high and right low" with minor negative Eu anomalies (0.67-1.12, average 0.90), and heavy REE content is low, indicating the geochemical characteristics of arc igneous rocks in continental margin. Various binary diagrams reveal fractional crystallization of olivine, clinopyroxene, and hornblende. The existence of stratigraphic xenoliths and the La/Sm value (2.99-8.59, average 5.95) suggest the limited crustal contamination during the magma rise. The zircon Hf isotopic compositions of the quartz diorite are mainly characterized by εHf (t) values of 3.9-7.0, two-stage model ages of 991-1 191 Ma (average 1 083 Ma), which is older than U-Pb age. The petrological, geochemical data and zircon Hf isotopic compositions imply that the primary magma derived from a depleted mantle probably mixed with metasomatic enriched lithospheric mantle components and the early fluid metasomatism of oceanic plate. Based on the regional magmatism and the previous study, the authors infer that the old Junggar Ocean crust subducted southward beneath the northern edge of Yili block during 467.7 Ma-455.4 Ma, and ended in the Late Ordovician-Early Silurian.

Key words: zircon U-Pb dating, Hf isotope, diorite, Early Paleozoic, Yili block

中图分类号: 

  • P631.84
[1] Sengör A M C, Natal'in B A, Burtman V S. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia[J]. Nature, 1993, 364:299-307.
[2] Jahn B M, Wu F Y, Chen B. Massive Granitoid Generation in Central Asia:Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic[J]. Episodes, 2000, 23:82-92.
[3] Kovalenko V I, Yarmolyuk V V, Kovach V P, et al. Isotope Provinces, Mechanisms of Generation and Sources of the Continental Crust in the Central Asian Mobile Belt:Geological and Isotopic Evidence[J]. Journal of Asian Earth Sciences, 2004, 23(5):605-627.
[4] Xiao W J, Zhang L C, Qin K Z, et al. Paleozoic Accretionary and Collisional Tectonics of Eastern Tianshan (China):Implications for the Continental Growth of Central Asia[J]. American Journal of Science, 2004, 304(4):370-395.
[5] Xiao W J, Han C M, Yuan C, et al. Middle Cambrian to Permian Subduction-Related Accretionary Orogenesis of Northern Xinjiang, NW China:Implications for the Tectonic Evolution of Central Asia[J]. Journal of Asian Earth Sciences, 2008, 32(2):102-117.
[6] Xiao W J, Windley B F, Huang B C, et al. End Permian to Mid-Triassic Termination of the Southern Central Asian Orogenic Belt[J]. International Journal of Earth Sciences, 2009, 98(6):1189-1217.
[7] Xiao W J, Huang B C, Han C M, et al. A Review of the Western Part of the Altaids:A Key to Understanding the Architecture of Accretionary Orogens[J]. Gondwana Research, 2010, 18(2/3):253-273.
[8] Xiao W J, Windley B F, Allen M B, et al. Paleozoic Multiple Accretionary and Collisional Tectonics of the Chinese Tianshan Orogenic Oollage[J]. Gondwana Research, 2013, 23(4):1316-1341.
[9] Safonova I Y, Utsunomiya A, Kojima S, et al. Pacific Superplume-Related Oceanic Basalts Hosted by Accretionary Complexes of Central Asia, Russian Far East and Japan[J]. Gondwana Research, 2008, 16(3):587-608.
[10] Shen P, Shen Y C, Liu T B, et al. Geochemical Signature of Porphyries in the Baogutu Porphyry Copper Belt, Western Junggar, NW China[J]. Gondwana Research, 2009, 16(2):227-242.
[11] Wong K, Sun M, Zhao G C, et al. Geochemical and Geochronological Studies of the Alegedayi Ophiolitic Complex and Its Implication for the Evolution of the Chinese Altai[J]. Gondwana Research, 2010, 18(2/3):438-454.
[12] Gao J, Klemd R, Qian Q, et al.The Collision Between the Yili and Tarim Blocks of the Southwestern Altaids:Geochemical and Age Constraints of a Leucogranite Dike Crosscutting the HPLT Metamorphic Belt in the Chinese Tianshan Orogen[J].Tectonophy Sics, 2011, 499(1/2/3/4):118-131.
[13] Rojas-Agramonte Y, Kröner A, Demoux A,et al. Detrital and Xenocrystic Zircon Ages from the Neoproterozoic to Paleozoic Arc Terranes of Mongolia:Significance for the Origin of Crustal Fragments in the Central Asian Orogenic Belt[J]. Gondwana Research, 2011, 19(3):751-763.
[14] Xiao W J, Santosh M. The Western Central Asian Orogenic Belt:A Window to Accretionary Orogenesis and Continental Growth[J]. Gondwana Research, 2014, 25(4):1429-1444.
[15] Buslov M M, Saphonova I Y, Watanabe T, et al. Evolution of the Paleo-Asian Ocean (Altai-Sayan Region, Central Asia)and Collision of Possible Gondwana-Derived Terranes with the Southern Marginal Part of the Siberian Continent[J]. Geosciences Journal, 2001, 5(3):203-224.
[16] Buslov M M, Watanabe T, Fujiwara Y, et al. Late Paleozoic Faults of the Altai Region, Central Asia:Tectonic Pattern and Model of Formation[J]. Journal of Asian Earth Sciences,2004,23(5):655-671.
[17] Chen Jiafu, Han Baofu, Ji Jianqing, et al. Zircon U-Pb Ages and Tectonic Implications of Paleozoic Plutons in Northern West Junggar, North Xinjiang, China[J]. Lithos, 2010, 115:137-152.
[18] 韩宝福,郭召杰,何国琦,等."钉合岩体"与新疆北部主要缝合带的形成时限[J].岩石学报,2010,26(8):2233-2246. Han Baofu,Guo Zhaojie,He Guoqi, et al. Timing of Major Suture Zones in North Xinjiang,China:Constraints from Stitching Plutons[J]. Acta Petrologica Sinica,2010,26(8):2233-2246.
[19] 何彦彬,王金荣,侯克选,等.新疆西准噶尔库鲁木苏石英闪长岩成因及地质意义[J].兰州大学学报(自然科学版),2015,51(3):303-312. He Yanbin,Wang Jinrong,Hou Kexuan, et al. Origin and Geological Implications of Kulumusu Quartz Diorite in West Junggar, Xinjiang[J]. Journal of Lanzhou University(Natural Sciences),2015,51(3):303-312.
[20] 夏林圻, 夏祖春, 徐学义,等. 天山古生代洋陆转化特点的几点思考[J]. 西北地质, 2002,35(4):9-20. Xia Linjin,Xia Zuchun,Xu Xueyi, et al. Some Thoughts on the Characteristics of Paleozoic Ocean-Continent Transition from Tianshan Mountains[J]. Northwestern Geology, 2002,35(4):9-20.
[21] Dong Y P, Zhang G W, Zhou D W, et al. Geology and Geochemistry of the Bingdaban Ophiolitic Mélange in the Boundary Fault Zone on the Northern Central Tianshan Belt, and Its Tectonic Implications[J]. Science in China:Series D, 2007,50(1):7-21.
[22] Dong Y P, Zhang G W, Neubauer F, et al. Syn-and Post-Collisional Granitoids in the Central Tianshan Orogen:Geochemistry, Geochronology and Implications for Tectonic Evolution[J]. Gondwana Research, 2011,20(2/3):568-581.
[23] 李玮, 陈隽璐, 董云鹏, 等. 早古生代古亚洲洋俯冲记录:来自东天山卡拉塔格高镁安山岩的年代学、地球化学证据[J]. 岩石学报, 2016, 32(2):505-521. Li Wei,Chen Junlu,Dong Yunpeng, et al.Early Paleozoic Subduction of the Paleo-Asian Ocean:Zircon U-Pb Geochronological and Geochemical Evidence from the Kalatag High-Mg Andesites, East Tianshan[J]. Acta Petrologica Sinica, 2016, 32(2):505-521.
[24] Windley B F, Alexeiev D, Xiao W, et al. Tectonic Models for Accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007,164:31-47.
[25] 贺振宇, 张泽明, 宗克清,等. 星星峡石英闪长质片麻岩的锆石年代学:对天山造山带构造演化及基底归属的意义[J]. 岩石学报, 2012, 28(6):1857-1874. He Zhenyu,Zhang Zeming,Zong Keqing, et al.Zircon Geochronology of Xingxingxia Quartz Dioritic Gneisses:Implications for the Tectonic Evolution and Precambrian Basement Affinity of Chinese Tianshan Orogenic Belt[J]. Acta Petrologica Sinica,2012, 28(6):1857-1874.
[26] 韩宝福,何国琦,吴泰然,等. 天山早古生代花岗岩锆石U-Pb定年、岩石地球化学特征及其大地构造意义[J]. 新疆地质,2004,22(1):4-11. Han Baofu, He Guoqi, Wu Tairan, et al.Zircon U-Pb Dating and Geochemical Features of Early Paleozoic Granites from Tianshan, Xinjiang:Implications for Tectonic Evolution[J]. Xinjiang Geology, 2004,22(1):4-11.
[27] 朱宝清,冯益民,杨军录,等. 新疆中天山干沟一带蛇绿混杂岩和志留纪前陆盆地的发现及其意义[J]. 新疆地质,2002,20(4):326-330. Zhu Baoqing,Feng Yimin,Yang Junlu, et al.Discovery of Ophiolitic Melange and Silurian Foreland Basin at Gangou of Tokxun, Xinjiang and Their Tectonic Significance[J]. Xinjiang Geology, 2002,20(4):326-330.
[28] 冯益民.西准噶尔蛇绿岩生成环境及其成因类型[J].西北地质科学,1986(2):37-45. Feng Yimin. Genetic Environments and Original Types of Ophiolites in West Jungar[J].Northwest Geoscience,1986(2):37-45.
[29] 朱宝清,王来生,王连晓. 西准噶尔西南地区古生代蛇绿岩[J]. 西北地质科学,1987(3):3-64. Zhu Baoqing, Wang Laisheng, Wang Lianxiao. Paleozoic Era Ophiolite of South West Part in Western Junggar,Xinjiang,China[J].Northwest Geoscience, 1987(3):3-64.
[30] 肖序常,汤耀庆,冯益民,等. 新疆北部及其邻区大地构造[M]. 北京:地质出版社,1992. Xiao Xuchang,Tang Yaoqing,Feng Yimin,et al.Tectionic Evolution of Northern Xinjiang and Its Adjacent Regions[M]. Beijing:Geological Publishing House,1992.
[31] 张立飞. 新疆西准噶尔唐巴勒蓝片岩40Ar/39Ar年龄及其地质意义[J].科学通报,1997,42(20):2178-2181. Zhang Lifei.The 40Ar/39Ar Metamorphic Ages of Tangbale Blueschists and Their Geological Significance in West Junggar of Xinjiang[J]. Chinese Science Bulletin,1997,42(20):2178-2181.
[32] 舒良树,夏飞雅克,马瑞士. 中天山北缘大型右旋走滑韧剪带研究[J]. 新疆地质,1998(4):326-336. Shu Liangshu, Charvet Jacques,Ma Ruishi. Study of a Large Scale Palezoic Dextral Strike-Slip Ductile Shear Zone Along the Northern Margin of the Central Tianshan,Xinjiang[J]. Xinjiang Geology,1998(4):326-336.
[33] 李孔森,王博,舒良树,等. 北天山温泉群的地质特征、时代和构造意义[J]. 高校地质学报,2013,19(3):491-503. Li Kongsen,Wang Bo,Shu Liangshu,et al. Geological Features, Ages, and Tectonic Implications of the Wenquan Group in NW Chinese Tianshan[J]. Geological Journal of China Universities, 2013,19(3):491-503.
[34] 徐学义,李荣社,陈隽璐,等.新疆北部古生代构造演化的几点认识[J]. 岩石学报,2014,30(6):1521-1534. Xu Xueyi,Li Rongshe,Chen Junlu,et al. New Constrains on the Paleozoic Tectonic Evolution of the Northern Xinjiang Area[J]. Acta Petrologica Sinica,2014,30(6):1521-1534.
[35] 张弛,黄萱. 新疆西准噶尔蛇绿岩形成时代和环境的探讨[J]. 地质论评, 1992, 38(9):509-524. Zhang Chi, Huang Xuan. The Ages and Tectonic Settings of Ophiolites in West Junggar, Xinjiang[J].Geological Review, 1992, 38(9):509-524.
[36] 黄萱,金成伟,孙宝山,等. 新疆阿尔曼太蛇绿岩时代的Nd-Sr同位素地质研究[J]. 岩石学报,1997,13(1):86-92. Huang Xuan,Jin Chengwei,Sun Baoshan, et al. Study on the Age of Armantai Ophiolite,Xinjiang by Nd-Sr Isotope Geology[J]. Acta Petrologica Sinica, 1997,13(1):86-92.
[37] 胡霭琴,韦刚健,张积斌,等. 西天山温泉地区早古生代斜长角闪岩的锆石SHRIMP U-Pb年龄及其地质意义[J]. 岩石学报,2008,24(12):2731-2740. Hu Aiqin,Wei Gangjian,Zhang Jibin,et al. SHRIMP U-Pb Ages for Zircons of the Amphibolites and Tectonic Evolution Significance from the Wenquan Domain in the West Tianshan Mountains,Xinjiang,China[J].Acta Petrologica Sinica, 2008,24(12):2731-2740.
[38] Wang B, Faure M, Shu L, et al. Paleozoic Tectonic Evolution of the Yili Block, Western Chinese Tianshan[J]. Bulletin De La Societe Geologique De France, 2008, 179(5):483-490.
[39] Wang B,Jahn B M,Shu L S,et al. Middle-Late Ordovician Arc-Type Plutonism in the NW Chinese Tianshan:Implication for the Accretion of the Kazakhstan Continent in Central Asia[J]. Journal of Asian Earth Sciences,2012,49:40-53.
[40] 舒良树,朱文斌,王博,等. 新疆古块体的形成与演化[J]. 中国地质,2013,40(1):43-60. Shu Liangshu, Zhu Wenbin, Wang Bo,et al. The Formation and Evolution of Ancient Blocks in Xinjiang[J]. Chinese Geology, 2013,40(1):43-60.
[41] Wang B,Jahn B M,Lo C H,et al. Structural Analysis and 40Ar/39Ar Thermochronology of Proterozoic Rocks in Sailimu Area (NW China):Implication to Polyphase Tectonics of the North Chinese Tianshan[J]. Journal of Asian Earth Sciences,2011,42:839-853.
[42] Yuan H L,Gao S,Liu X M,et al. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Geostandards and Geoanalytical Research,2004,28(3):353-370.
[43] Anderson T. Correction of Common Lead Pb in U-Pb Analyses That do not Report 204Pb[J]. Chemical Geology,2002,192(1/2):59-79.
[44] Ludwig K R. ISOPLOT, A Geochronological Toolkit for Microsoft Excel 3.00[M]. Berkeley:Berkeley Geochronology Center Special Publication, 2003:1-57.
[45] 侯可军, 李延河, 邹天人, 等. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报, 2007, 23(10):2595-2604. Hou Kejun, Li Yanhe, Zou Tianren, et al. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications[J].Acta Petrologica Sinica, 2007, 23(10):2595-2604.
[46] Meng E, Liu F L, Liu P H,et al. Petrogenesis and Tectonic Significance of Paleoproterozoic Meta-Mafic Rocks from Central Liaodong Peninsula, Northeast China:Evidence from Zircon U-Pb Dating and in Situ Lu-Hf Isotopes, and Whole-Rock Geochemistry[J]. Precambrian Research, 2014,247:92-109.
[47] 路远发.GeoKit:一个用VBA构建的地球化学工具软件包[J].地球化学, 2004, 33(5):459-464. Lu Yuanfa.GeoKit:A Geochemical Toolkit for Microsoft Excel[J]. Geochimica, 2004, 33(5):459-464.
[48] Hanchar J M,Rudnick R L. Revealing Hidden Structures:The Application of Cathodoluminescence and Back-Scattered Electron Imaging to Dating Zircons from Lower Crust Xenoliths[J]. Lithos,1995,36:289-303.
[49] Griffin W L,Belousova E A,Shee S R,et al. Archean Crustal Evolution in the Northern Yilgarn Craton:U-Pb and Hf-Isotope Evidence from Detrital Zircons[J]. Precambrian Research,2004,131(3/4):231-282.
[50] 吴福元,杨进辉,张艳斌,等.辽西东南部中生代花岗岩的时代[J].岩石学报, 2006,22(2):315-325. Wu Fuyuan,Yang Jinhui,Zhang Yanbin,et al. Emplacement Ages of the Mesozoic Granites in Southeastern Part of the Western Liaoning Province[J]. Acta Petrologica Sinica, 2006,22(2):315-325.
[51] Vervoort J D,Pachelt P J,Gehrels,G E,et al. Constraints on Early Earth Differentiation from Hafnium and Neodymium Isotopes[J]. Nature,1996,379:624-627.
[52] Amelin Y, Lee D C, Halliday A N, et al. Nature of the Earth's Earliest Crust from Hafnium Isotopes in Singledetrital Zircons[J]. Nature, 1999, 399:1497-1503.
[53] 第五春荣,孙勇,林慈銮,等.豫西宜阳地区TTG质片麻岩锆石U-Pb定年和Hf同位素地质学[J].岩石学报,2007,23(2):253-262. Diwu Chunrong, Sun Yong, Lin Ciluan,et al. Zircon U-Pb Ages and Hf Isotopes and Their Geological Significance of Yiyang TTG Gneisses from Henan Province,China[J].Acta Petrologica Sinica, 2007,23(2):253-262.
[54] Morrison G W. Characteristics and Tectonic Setting of the Shoshonite Rock Association[J]. Lithos, 1980,13(1):97-108.
[55] Middlemost E A. Naming Materials in the Magma/Igneous Rock System[J]. Earth-Science Reviews, 1994,37(3/4):215-224.
[56] Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J]. Geological Society Special Publication, 1989,42:313-345.
[57] Green T H. Experimental Studies of Trace-Element Partitioning Applicable to Igneous Petrogenesis-Sedona 16 Years Later[J].Chemical Geology, 1994, 117(1):1-36.
[58] Fodor R V, Vetter S K. Rift-Zone Magmatism:Petrology of Basaltic Rocks Transition from CFB to MORB, Southeastern Brazil Margin[J].Contribution to Mineralogy and Petrology,1984,88:307-321.
[59] Späth A, Le Roex A P, Opiyo-Akech N. Plume-Lithosphere Interaction and the Origin of Continental Rift-Related Alkaline Volcanism:The Chyulu Hills Volcanic Province, Southern Kenya[J]. Journal of Petrology, 2001, 42(4):765-787.
[60] Geist D, Naumann T, Larson P. Evolution of Galápagos Magmas:Mantle and Crustal Fractionation Without Assimila-Tion[J]. Journal of Petrology, 1998, 39(5):953-971.
[61] 陈斌,翟明国,邵济安.太行山北段中生代岩基的成因和意义:主要和微量元素地球化学证据[J].中国科学:D辑,2002,32(11):896-907. Chen Bin,Zhai Mingguo,Shao Ji'an.Origin of the Mesozoic Batholiths from the Northern Taihang Orogen and Its Implication:Major and Trace Elemental Constraints[J]. Science in China:Series D,2002,32(11):896-907.
[62] 路凤香. 岩石学[M]. 北京:地质出版社, 2002. Lu Fengxiang.Petrology[M]. Beijing:Geological Publishing House,2002.
[63] DePaolo D J. Trace Element and Isotopic Effects of Combined Wallrock Assimilation and Fractional Crystallization[J]. Earth and Planetary Science Letters, 1981,53(2):189-202.
[64] Halama R, Marks M, Brügmann G, et al. Crustal Contamination of Mafic Magmas:Evidence from a Petrological, Geochemical and Sr-Nd-Os-O Isotopic Study of the Proterozoic Isortoq Dike Swarm, South Greenland[J]. Lithos, 2004, 74(3/4):199-232.
[65] Mir A R, Alvi S H, Balaram V. Geochemistry of the Mafic Dykes in Parts of the Singhbhum Granitoid Complex:Petrogenesis and Tectonic Setting[J]. Arabian Journal of Geosciences,2011, 4(5/6):933-943.
[66] Hofmann W. Chemical Differentiation of the Earth:The Realationship Between Mantle, Continental Crust, and Oceanic Crust[J]. Eartg and Planetary Science Letters, 1986, 90:297-314.
[67] Campbell I H, Griffiths R W. The Evolution of the Mantle's Chemical Structure[J]. Lithos, 1993, 30(3):389-399.
[68] MacDonald R, Rogers N W, Fitton J G, et al. Plume-Lithosphere Interactions in the Generation of the Basalts of the Kenya Rift, East Africa[J]. Journal of Petrology, 2001, 42(5):877-900.
[69] Lassiter J C, De Paolo D J. Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts:Chemical and Isotopic Constraints[C]//Mahoney J,Coffin F. Large Igneous Provinces:Continental,Oceanic,and Planetary Flood Volcanism,Geophys. Monogr Ser,Vol 100 Washington. D C:AGU,1997:335-355.
[70] Neal C R, Mahoney J J, Chazey W J. Mantle Sources and the Highly Variable Role of Continental Lithosphere in Basalt Petrogenesis of the Kerguelen Plateau and Broken Ridge LIP:Results from ODP Leg 183[J]. Journal of Petrology, 2002, 43:1177-1205.
[71] Taylor S R, Mclennan S M. The Continental Crust:Its Composition and Evolution[M]. Oxford:Blackwell Scientific Publications,1985.
[72] 王冠, 孙丰月, 李碧乐,等. 东昆仑夏日哈木铜镍矿镁铁质-超镁铁质岩体岩相学、锆石U-Pb年代学、地球化学及其构造意义[J]. 地学前缘, 2014, 21(6):381-401. Wang Guan, Sun Fengyue, Li Bile,et al.Petrography,Zircon U-Pb Geochronology and Geochemistry of the Mafic-Ultramafic Intrusion in Xiarihamu Cu-Ni Deposit from East Kunlun,with Implications for Geodynamic Setting[J]. Earth Science Frontiers, 2014, 21(6):381-401.
[73] Bolhar R, Weaver S D, Whitehouse M J, et al. Sources and Evolution of Arc Magmas Inferred from Coupled O and Hf Isotope Systematics of Plutonic Zircons from the Cretaceous Separation Point Suite(New Zealand)[J]. Earth and Planetary Science Letters,2008,268(3/4):312-324.
[74] 吴福元,李献华,郑永飞,等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2):185-220. Wu Fuyuan, Li Xianhua, Zheng Yongfei, et al. Lu-Hf Isotopic Systematics and Their Applications in Petrology[J]. Acta Petrologica Sinica, 2007, 23(2):185-220.
[75] Kepezhinska S P, Mcdermott F, Defant M J, et al.Trace Element and Sr-Nd-Pb Isotopic Constraints on a Three-Component Model of Kamchatka Arc Petrogenesis[J].Geochimica et Cosmochimica Acta, 1997, 61(3):577-600.
[76] 葛文春,林强,孙德有,等.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据[J].岩石学报,1999,15(3):396-407. Ge Wenchun,Lin Qiang,Sun Deyou, et al. Geochemical Characteristics of the Mesozoic Basalts in Da Hinggan Ling:Evidence of the Mantle-Crust Interaction[J]. Acta Petrologica Sinica, 1999,15(3):396-407.
[77] Stolz A J, Jochum K P, Hofmann A W. Fluid and Melt-Related Enrichment in the Subarc Mantle:Evidence from Nb/Ta Variations in Island-Arc Basats[J]. Geology, 1996,24:587-590.
[78] Rudnick R L, Gao S. Composition of the Continental Crust[C]//Holland H D, Turekian K K. The Crust. Treatise on Geochemistry Oxford:Elsevier-Pergamon,2003:1-64.
[79] Ayers J. Trace Element Modeling of Aqueous Fluid-Peridotite Interaction in the Mantle Wedge of Subduction Zones[J]. Contributions to Mineralogy and Petrology, 1998, 132:390-404.
[80] 唐冬梅,秦克章,孙赫,等.天宇铜镍矿床的岩相学、锆石U-Pb年代学、地球化学特征:对东疆镁铁-超镁铁质岩体源区和成因的制约[J].岩石学报,2009,25(4):817-831. Tang Dongmei, Qin Kezhang, Sun He, et al. Lithological, Chronological and Geochemical Characteristics of Tianyu Cu-Ni Deposit:Constraints on Source and Genesis of Mafic-Ultramafic Intrusions in Eastern Xinjiang[J]. Acta Petrologica Sinica, 2009,25(4):817-831.
[81] Chung S L, Wang K L, Crawford A J, et al. High-Mg Potassic Rocks from Taiwan:Implications for the Genesis of Orogenic Potassic Laves[J]. Lithos, 2001,59:153-170.
[82] Seghedi J, Downes H, Vaselli O, et al. Post-Collisional Tertiary Quaternary Mafic Alkalic Magmatism in the Carpathian Pannonian Region:A Review[J]. Tectonophysics, 2004,393:43-62.
[83] Pearce J A. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust[J]. Lithos, 2008, 100(1):14-48.
[84] Watson E B, Harrison T M. Zircon Saturation Revisited:Temperature and Composition Effect in Avariety of Crustal Magmas Types[J]. Earth and Planetary Science Letters, 1983,64:295-304.
[85] 隋振民,陈跃军.大兴安岭东部花岗岩类锆石饱和温度及其地质意义[J].世界地质,2011,30(2):162-172. Sui Zhenmin, Chen Yuejun. Zircon Saturation Temperatures of Granites in Eastern Great Xing'an Range, and Its Geological Signification[J]. Global Geology,2011,30(2):162-172.
[86] Miller C F, McDowell S M,Mapes R W. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance[J]. Geology, 2003,31:529-532.
[87] 吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题[J].岩石学报,2007,23(6):1217-1238. Wu Fuyuan, Li Xianhua, Yang Jinhui, et al. Discussions on the Petrogenesis of Granites[J]. Acta Petrologica Sinica,2007,23(6):1217-1238.
[88] Woodhead J D, Eggins S M, Johnson R W. Magma Genesis in the New Britain Island Arc:Further Insights into Melting and Mass Transfer Processes[J]. Journal of Petrology, 1998,39(9):1641-1668.
[89] Hanyu T, Tatsumi Y, Nakai S, et al. Contribution of Slabmelting and Slab Dehydration to Magmatism in the NE Japan Arc for the Last 25 Myr:Constraints from Geochemistry[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(8):1-29.
[90] Tian L Y, Castillo P R, Hilton D R, et al. Major and Trace Element and Sr-Nd Isotope Signatures of the Northern Lau Basin Lavas:Implications for the Composition and Dynamics of the Back-Arc Basin Mantle[J]. Journal of Geophysical Research, 2011,116:B11201-B11218.
[91] Woodhead J D, Hergt J M, Davidson J P, et al. Hafnium Isotope Evidence for "Conservative" Element Mobility During Subduction Zone Processes[J]. Earth and Planetary Science Letters, 2001,192(3):331-346.
[92] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984,25:956-983.
[93] Müller D, Groves D I. Potassic Igneous Rocks and Associated Gold-Copper Mineralization[M]. Berlin:Spring-Verlag, 2000.
[94] Pearce J A, Peate D W. Tectonic Implications of the Composition of Volcanic Arc Magmas[J]. Annual Review of Earth and Planetary Sciences, 1995, 23:251-285.
[95] Hawkesworth C J, Hergt J M, Mcdermott F, et al. Destructive Margin Magmatism and the Contributions from the Mantle Wedge and Subducted Crust[J]. Australian Journal of Earth Sciences,1991, 38:577-594.
[96] Gorton M P, Schandl E S. From Continents to Island Arcs:A Geochemical Index of Tectonic Setting for Arc-Related and Within-Plate Felsic to Intermediate Volcanic Rocks[J]. The Canadian Mineralogist, 2000, 38(5):1065-1073.
[97] Salters V J M, Hart S R. The Mantle Sources of Ocean Ridges, Islands and Arcs:The Hf-Isotope Connection[J]. Earth and Planetary Science Letters, 1991,104:364-380.
[98] Choulet F, Cluzel D, Faure M, et al. New Constraints on the Pre-Permian Continental Crust Growth of Central Asia (West Junggar, China) by U-Pb and Hf Isotopic Data from Detrital Zircon[J]. Terra Nova, 2012, 24:189-198.
[99] 何国琦,李茂松,刘德权,等.中国新疆古生代地壳演化及成矿[M].乌鲁木齐:新疆人民出版社,香港:香港文化教育出版社, 1994. He Guoqi,Li Maosong,Liu Dequan, et al. Paleozoic Crust Evolvement and Mineralization in Xinjiang[M].Urumqi:Xinjiang People's Press,Hong Kong:Hong Kong Cultural and Educational Press,1994.
[100] 高俊,何国琦,李茂松.西天山造山带的古生代造山过程[J].地球科学:中国地质大学学报,1997,22(1):27-32. Gao Jun,He Guoqi,Li Maosong.Paleozoic Orogenic Processes of Western Tianshan Orogen[J].Earth Science:Journal of China University of Geosciences,1997,22(1):27-32.
[101] 高俊,钱青,龙灵利,等.西天山的增生造山过程[J].地质通报,2009,28(12):1804-1816. Gao Jun, Qian Qing, Long Lingli,et al. Accretionary Orogenic Process of Western Tianshan, China[J].Geological Bulletin of China, 2009,28(12):1804-1816.
[102] 齐天骄,薛春纪,许碧霞.新疆昭苏布合塔铜(金)矿化区花岗质岩石锆石U-Pb年龄、地球化学特征及其成因[J].吉林大学学报(地球科学版),2018,48(1):132-144. Qi Tianjiao,Xue Chunji,Xu Bixia. Zircon U-Pb Age and Geochemical Characteristics of Granites from Buheta Cu (Au) Mineralization District in Zhaosu County, Xinjiang Province[J].Journal of Jilin University(Earth Science Edition),2018,48(1):132-144.
[103] 董连慧,祁世军,成守德,等.新疆地壳演化及优势矿产成矿规律研究[M].武汉:中国地质大学出版社,2009. Dong Lianhui,Qi Shijun,Cheng Shoude, et al. Xinjiang Crustal Evolution and Advantages of Mineral Mineralization[M].Wuhan:China University of Geosciences Press,2009.
[1] 王挽琼, 刘正宏, 徐仲元, 白新会. 内蒙古乌拉特中旗色尔腾山岩群东五分子岩组锆石SHRIMP定年及其地质意义[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1053-1062.
[2] 鲁倩, 孙景贵, 安久海, 韩吉龙, 褚小磊. 吉林敦化松江河地区中生代似斑状花岗岩成因和形成环境:元素、Hf同位素和锆石U-Pb年代学证据[J]. 吉林大学学报(地球科学版), 2019, 49(3): 673-689.
[3] 吕骏超, 舒广龙, 张德宝, 赵岩, 刘桂香, 毕中伟. 内蒙古扎赉特旗神山铁铜矿床成岩成矿年代学及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1683-1695.
[4] 张朋, 寇林林, 赵岩, 毕中伟. 辽宁树基沟铜锌矿床黑云斜长角闪片麻岩锆石U-Pb年龄、Hf同位素组成及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1365-1377.
[5] 张强, 丁清峰, 宋凯, 程龙. 东昆仑洪水河铁矿区狼牙山组千枚岩碎屑锆石U-Pb年龄、Hf同位素及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1085-1104.
[6] 乔健, 栾金鹏, 许文良, 王志伟, 赵硕, 郭鹏. 佳木斯地块北部早古生代沉积建造的时代与物源:来自岩浆和碎屑锆石U-Pb年龄及Hf同位素的制约[J]. 吉林大学学报(地球科学版), 2018, 48(1): 118-131.
[7] 孙凡婷, 刘晨, 邱殿明, 鲁倩, 贺云鹏, 张铭杰. 大兴安岭东坡小奎勒河中基性侵入岩成因及地球动力学意义:锆石U-Pb年代学、元素和Hf同位素地球化学证据[J]. 吉林大学学报(地球科学版), 2018, 48(1): 145-164.
[8] 张超, 崔芳华, 张照录, 耿瑞, 宋明春. 鲁西金岭地区含矿闪长岩体成因:来自锆石U-Pb年代学和地球化学证据[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1732-1745.
[9] 杨凤超, 宋运红, 赵玉岩. 辽宁盘岭矿集区花岗岩锆石SHRIMP U-Pb年龄、Hf同位素组成及地质意义[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1429-1441.
[10] 刘晨, 孙景贵, 邱殿明, 古阿雷, 韩吉龙, 孙凡婷, 杨梅, 冯洋洋. 大兴安岭北段东坡小莫尔可地区中生代火山岩成因及其地质意义:元素、Hf同位素地球化学与锆石U-Pb同位素定年[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1138-1158.
[11] 齐忠友, 冯志强, 温泉波, 张铁安, 刘宾强, 李小玉, 杜兵盈. 东北地区嫩江东北部早古生代闪长岩的成因探讨:锆石U-Pb年代学和地球化学证据[J]. 吉林大学学报(地球科学版), 2017, 47(1): 113-125.
[12] 郭宇飞, 杨言辰, 韩世炯, 谈艳, 薄军委. 大兴安岭北部凤凰山地区英云闪长岩地球化学特征与锆石U-Pb定年[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1406-1417.
[13] 李剑波, 王保宏, 杨亮, 景耀祖, 陈利珍. 内蒙古乌拉特中旗德岭山地区石英闪长岩的锆石U-Pb年龄及地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1430-1439.
[14] 李三忠, 杨朝, 赵淑娟, 刘鑫, 余珊, 李玺瑶, 郭玲莉, 索艳慧, 戴黎明, 郭润华, 张国伟. 全球早古生代造山带(Ⅳ): 板块重建与Carolina超大陆[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1026-1041.
[15] 李三忠, 杨朝, 赵淑娟, 李玺瑶, 郭玲莉, 余珊, 刘鑫, 索艳慧, 兰浩圆. 全球早古生代造山带(Ⅰ):碰撞型造山[J]. 吉林大学学报(地球科学版), 2016, 46(4): 945-967.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!