吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (4): 1082-1092.doi: 10.13278/j.cnki.jjuese.20170241

• 地质工程与环境工程 • 上一篇    下一篇

抚顺西露天矿南帮边坡破坏机理及内排压脚措施

胡高建1,2,3, 杨天鸿1, 张飞1   

  1. 1. 东北大学资源与土木工程学院, 沈阳 110819;
    2. 绍兴文理学院土木工程学院, 浙江 绍兴 312000;
    3. 浙江省岩石力学与地质灾害重点实验室, 浙江 绍兴 312000
  • 收稿日期:2018-05-16 出版日期:2019-07-26 发布日期:2019-07-26
  • 作者简介:胡高建(1987-),男,博士,主要从事矿山岩石力学和工程方面的研究,E-mail:hugaojian8@163.com
  • 基金资助:
    国家重点研发计划项目(2017YFC1503101);绍兴市公益性技术应用研究项目(2018C30006);浙江省山体地质灾害防治协同创新中心开放基金(PCMGH-2017-Y-05)

Failure Mechanism and Internal Dumping Control Measures of South Slope in Fushun West Open-Pit Coal Mine

Hu Gaojian1,2,3, Yang Tianhong1, Zhang Fei1   

  1. 1. School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China;
    2. Faculty of Civil Engineering, Shaoxing University, Shaoxing 312000, Zhejiang, China;
    3. Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province, Shaoxing 312000, Zhejiang, China
  • Received:2018-05-16 Online:2019-07-26 Published:2019-07-26
  • Supported by:
    Supported by National Key R & D Program of China (2017YFC1503101),Shaoxing Public Welfare Technology Application Research Project (2018C30006) and Zhejiang Collaborative Innovation Center for Prevention and Control of Mountain Geologic Hazards (PCMGH-2017-Y-05)

摘要: 为了研究抚顺西露天矿南帮边坡的破坏机理,抑制边坡的滑移变形,应用微震监测技术和卫星监测技术,研究了南帮边坡的滑移破坏轮廓,基于RFPA(rock failure process analysis)强度折减法原理,研究了开采到最终境界时的边坡破坏机理,提出了两阶段内排压脚的防治措施,并分析了内排压脚对滑坡变形的抑制效果。研究结果表明:1)边坡破坏机理为,破坏最先发生在边坡上部,在边坡中部沿着弱层和破碎带运动,到边坡下部不整合面处受到抑制,最后在边坡底部沿中间弱层切出坑底,形成滑坡轮廓;2)两阶段内排压脚方案能明显抑制弱层的错动,当内排到-262 m水平时,可部分抑制底部弱层处滑移,底鼓现象消失;当内排到-212 m水平时,可完全抑制住底部弱层的滑动,此时边坡安全系数为1.324,满足安全要求。

关键词: 滑移轮廓, 破坏机理, 内排压脚, 强度折减, 边坡

Abstract: To research the failure mechanism of the south slope of Fushun West open-pit mine and restrain the deformation and damage,the slipping profile of the South slope was studied by using micro-seismic monitoring technology and satellite monitoring technology. The failure mechanism of slope at the final state of mining was studied and the two-stage internal dumping control measure was put forward and analyzed based on the principle of RFPA strength reduction method. The results show:1) The failure mechanism of South slope is that the damage occurred first in the upper part of the slope, then moved along the weak layer to the middle of the slope, and then was restrained by the surface of unconformity in the lower part of the slope, and finally cut out the bottom of the pit along the middle of the weak layer. 2) The two-stage internal dumping foot-pressing scheme control measure can significantly restrain the movement of weak layer. When the dumping stacked to -262 m level, the movement of weak layer was partially restrained,and the phenomenon of bottom bulging was disappeared; when the dumping stacked to -212 m level, the movement of weak layer was completely restrained, at that moment the slope safety factor was 1.324, which meets the safety requirements.

Key words: slide profile, failure mechanism, internal dumping, strength reduction, slop

中图分类号: 

  • TD854.6
[1] 杨天鸿, 张锋春, 于庆磊, 等. 露天矿高陡边坡稳定性研究现状及发展趋势[J]. 岩土力学, 2011, 32(5):1437-1452. Yang Tianhong, Zhang Fengchun, Yu Qinglei, et al. Research Situation of Open-Pit Mining High and Steep Slope Stability and Its Developing Trend[J]. Rock and Soil Mechanics, 2011, 32(5):1437-1452.
[2] 卢世宗. 我国矿山边坡研究的基本情况和展望[J].金属矿山,1999(9):6-10 Lu Shizong. Basic Conditon and Prospect of China's Mine Slope Research[J]. Metal Mine, 1999(9):6-10.
[3] 杨天鸿, 解连库, 唐春安,等. 抚顺西露天矿北帮边坡治理工程效果初步评价[J]. 岩石力学与工程学报, 2005, 24(11):1841-184. Yang Tianhong, Xie Lianku, Tang Chun'an, et al. Effect Evaluation of Distortion for North Project of Side Slope in Fushunwest Open Cast[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(11):1841-1846.
[4] Geeralt V D H, Joachim R, Thomas M, et al. Finite Element Simulation of a Slow Moving Natural Slope in the Upper-Austrian Alps Using a Visco-Hypoplastic Constitutive Model[J]. Geomorphology, 2009, 103(1):136-142.
[5] Li A J, Merifield R S, Lyamin A V. Stability Charts for Rock Slopes Based on the Hoek-Brown Failure Criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5):689-700.
[6] Lysandros P. Rock Slope Stability Assessment Through Rock Mass Classification Systems[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2):315-325.
[7] Masoud Z N, Rafael J, Reza K K, et al. A New Open-Pit Mine Slope Instability Index Defined Using the Improved Rock Engineering Systems Approach[J]. International Journal of Rock Mechanics & Mining Sciences, 2013, 61(5):1-14.
[8] 郑颖人, 赵尚毅. 有限元强度折减法在土坡与岩坡中的应用[J]. 岩石力学与工程学报, 2004, 23(19):3381-3388. Zheng Yingren, Zhao Shangyi. Application of Strength Reduction FEM in Soil and Rock Slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(19):3381-3388.
[9] 张振华, 冯夏庭, 周辉, 等. 基于设计安全系数及破坏模式的边坡开挖过程动态变形监测预警方法研究[J]. 岩土力学, 2009, 30(3):603-612. Zhang Zhenhua, Feng Xiating, Zhou Hui, et al. Research on Dynamic Early Warning Method of Slope Deformation Monitoring During Excavation Based on Designed Safety Factor and Failure Mode[J]. Rock and Soil Mechanics, 2009, 30(3):603-612.
[10] 黄盛铨, 刘君, 孔宪京. 强度折减DDA法及其在边坡稳定分析中的应用[J]. 岩石力学与工程学报, 2008, 27(增刊1):1799-1806. Huang Shengquan, Liu Jun, Kong Xianjing. DDA with Strength Reduction Technique and Its Application to Stability Analysis of Rock Slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(Sup.1):1799-1806.
[11] Tianhong Yang, Tao Xu, Hongyuan Liu, et al. Rheological Characteristics of Weak Rock Mass and Effects on the Long-Term Stability of Slopes[J]. Rock Mechanics and Rock Engineering, 2014, 47(6):2253-2263.
[12] Wang S H, Ni P. Application of Block Theory Modeling on Spatial Block Topological Identification to Rock Slope Stability Analysis[J]. International Journal of Computational Methods, 2014, 11(1):390-400.
[13] 胡高建, 杨天鸿, 师文豪,等. 安家岭煤矿岩体结构数字识别及关键块体确定[J]. 煤炭学报, 2014, 39(12):2412-2417. Hu Gaojian, Yang Tianhong, Shi Wenhao, et al. Digital Recognition and Key Block Identification of Rock Mass Structure in Anjialing Coal Mine[J]. Journal of China Coal Society, 2014, 39(12):2412-2417.
[14] Wang P, Cai M, Ren F, et al. Theoretical Investigation of Deformation Characteristics of Stratified Rocks Considering Geometric and Mechanical Variability[J]. Geosciences Journal, 2017, 21(3):213-222.
[15] 常晓军,葛伟亚,于洋,等.福建省永泰县东门旗山滑坡诱发机理与防治措施[J].吉林大学学报(地球科学版),2019,49(4):1063-1072.doi:10.13278/j.cnki.jjuese.20180082. Chang Xiaojun, Ge Weiya, Yu Yang,et al.Mechanism and Mitigation Measures of Qishan Landslide, Yongtai, Fujian Province[J].Journal of Jilin University (Earth Science Edition),2019,49(4):1063-1072.doi:10.13278/j.cnki.jjuese.20180082.
[16] 谭福林,胡新丽,张玉明,等.考虑渐进破坏过程的滑坡推力计算方法[J].吉林大学学报(地球科学版),2018,48(1):193-202. Tan Fulin, Hu Xinlin, Zhang Yuming, et al. Calculation Method of Landside Thrust Considering Progressive Failure Process[J]. Journal of Jilin University(Earth Science Edition), 2018,48(1):193-202.
[17] 郑颖人. 岩土数值极限分析方法的发展与应用[J]. 岩石力学与工程学报, 2012, 31(7):1297-1316. Zheng Yingren. Development and Application of Numerical Limit Analysis for Geological Materials[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(7):1297-1316.
[18] 郑颖人, 赵尚毅. 有限元强度折减法在土坡与岩坡中的应用[J]. 岩石力学与工程学报, 2004, 23(19):3381-3388. Zheng Yingren, Zhao Shangyi. Application of Strength Reduction FEM to Soil and Rock Slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(19):3381-3388.
[19] 赵尚毅, 郑颖人, 时卫民, 等. 用有限元强度折减法求边坡稳定安全系数[J]. 岩土工程学报, 2002, 24(3):343-346. Zhao Shangyi, Zheng Yingren, Shi Weimin, et al. Analysis of Safety Factor of Slope Stability by Strength Reduction FEM[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(3):343-346.
[20] 年廷凯, 万少石, 蒋景彩, 等. 库水位下降过程中土坡稳定强度折减有限元分析[J]. 岩土力学, 2010, 31(7):2264-2270. Nian Tingkai, Wan Shaoshi, Jiang Jingcai, et al. Finite Element Analysis of Slope Stability Under Drawdown Conditions by Strength Reduction Technique[J]. Rock and Soil Mechanics, 2010, 31(7):2264-2270.
[21] 陈国庆, 黄润秋, 周辉, 等. 边坡渐进破坏的动态强度折减法研究[J]. 岩土力学, 2013, 34(4):1140-1146. Chen Guoqing, Huang Runqiu, Zhou Hui, et al. Research on Progressive Failure for Slope Using Dynamic Strength Reduction Method[J]. Rock and Soil Mechanics, 2013, 34(4):1140-1146.
[22] 朱万成, 唐春安, 杨天鸿, 等. 岩石破裂过程分析(RFPA2D)系统的细观单元本构关系及验证[J]. 岩石力学与工程学报, 2003, 22(1):24-29. Zhu Wancheng, Tang Chun'an, Yang Tianhong, et al. Constitutive Relationship of Mesoscopic Elements Used in RFPA2D and Its Validations[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(1):24-29.
[23] 唐春安, 李连崇, 李常文, 等. 岩土工程稳定性分析RFPA强度折减法[J]. 岩石力学与工程学报, 2006, 25(8):1522-1530. Tang Chun'an, Li Lianchong, Li Changwen, et al. RFPA Strength Reduction Method for Stability Analysis of Geotechnical Engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(8):1522-1530.
[24] 李连崇, 唐春安, 邢军, 等. 节理岩质边坡变形破坏的RFPA模拟分析[J]. 东北大学学报, 2006, 27(5):559-562. Li Lianchong, Tang Chun'an, Xing Jun, et al. Numerical Simulation and Analysis of Deformation and Failure of Jointed Rock Slopes by RFPA-Slope[J]. Journal of Northeastern University, 2006, 27(5):559-562.
[25] 刘善军, 王植, 毛亚纯, 等. 矿山安全与环境的多源遥感监测技术[J]. 测绘与空间地理信息, 2015, 38(10):98-100. Liu Shanjun, Wang Zhi, Mao Yachun, et al. Multi-Source Remote Sensing Technology for Monitoring Safety and Environment in Mine[J]. Geomatics & Spatial Information Technology, 2015, 38(10):98-100.
[26] 杨天鸿, 于庆磊, 陈仕阔, 等. 范各庄煤矿砂岩岩体结构数字识别及参数表征[J]. 岩石力学与工程学报, 2009, 28(12):2482-2489. Yang Tianhong, Yu Qinglei, Chen Shikuo, et al. Rock Mass Structure Digital Recognition and Hytromechanical Parameters Characterization of Sandstone in Fangezhuang Coal Mine[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(12):2482-2489.
[27] 工程岩体分级标准:GB 50218-2014[S].北京:中国计划出版社,2014. Engineering Rock Mass Classification Standard:GB 50218-2014[S]. Beijing:China Planning Press,2014.
[28] 张飞,杨天鸿,王植,等.某露天矿南帮滑体西部边界形态测定[J].东北大学学报(自然科学版),2017, 38(9):1335-1340. Zhang Fei, Yang Tianhong, Wang Zhi, et al. Determination of West Boundary for Landslide Body of the South Slope in an Open-Pit Mine[J]. Journal of Northeastern University (Natural Science), 2017, 38(9):1335-1340.
[29] 滑坡防治工程勘查规范:DZ/T 0218-2006[S].北京:中国标准出版社,2006:18-20. Specification of Geological Investigation for Landslide Stabilization:DZ/T 0218-2006[S]. Beijing:Standards Press of China, 2006:18-20.
[1] 李论基, 姚青青, 安玉科. 老滑坡路段路堑开挖与超前支护效果[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1767-1777.
[2] 唐军峰, 唐雪梅, 曾向农, 杨军, 李学政. 蓄水后库岸堆积体边坡变形特征及其稳定性分析[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1546-1555.
[3] 魏恺泓, 裴向军, 张世殊, 冉从彦, 崔中涛, 李青春, 李进元. 基于IBIS-L的某黄土高填方边坡支护结构变形特征[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1556-1565.
[4] 桂跃,余志华,刘海明,丁祖德,张庆. 滇池固化淤泥重塑土的重塑时机及强度恢复特性试验[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1928-1935.
[5] 孙红月,熊晓亮,尚岳全,蔡岳良. 边坡虹吸排水管内空气积累原因及应对措施[J]. 吉林大学学报(地球科学版), 2014, 44(1): 278-284.
[6] 王科,王常明,王彬, 姚康,王天佐. 基于MorgensternPrice法和强度折减法的边坡稳定性对比分析[J]. 吉林大学学报(地球科学版), 2013, 43(3): 902-907.
[7] 杜丽丽,孙红月,尚岳全. 松散堆积土边坡充气排水方法[J]. 吉林大学学报(地球科学版), 2013, 43(3): 877-882.
[8] 王吉亮,杨静,李会中,黄孝泉,刘冲平,白伟,郝文忠,朱永生. 乌东德水电站左岸拱肩槽边坡稳定性[J]. 吉林大学学报(地球科学版), 2013, 43(2): 528-536.
[9] 年廷凯,张克利,刘红帅,徐海洋. 基于强度折减法的三维边坡稳定性与破坏机制[J]. 吉林大学学报(地球科学版), 2013, 43(1): 178-185.
[10] 沈世伟, 佴磊, 徐燕. 不同权重条件下降雨对边坡稳定性影响的二级模糊综合评判[J]. J4, 2012, 42(3): 777-784.
[11] 李明, 李广杰, 张文. 基于概率统计的可拓学分析方法在边坡岩体质量分级中的应用[J]. J4, 2011, 41(5): 1488-1493.
[12] 安玉科, 佴磊. 关键块体系统锚固法在加固边坡危岩中的应用[J]. J4, 2011, 41(3): 764-770.
[13] 刘永莉, 尚岳全, 于洋. BOTDR技术在边坡表面变形监测中的应用[J]. J4, 2011, 41(3): 777-783.
[14] 王羽, 许强, 柴贺军, 唐胜传, 冯五一. 基于改进Shannon伪近邻法研究易滑地层位移变形时序[J]. J4, 2011, 41(1): 177-181.
[15] 刘红帅, 年廷凯, 万少石. 三维边坡稳定性分析中的边界约束效应[J]. J4, 2010, 40(3): 638-644.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!