吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (4): 1093-1099.doi: 10.13278/j.cnki.jjuese.20180015

• 地质工程与环境工程 • 上一篇    下一篇

钻井液性能对火山碎屑岩崩解性的影响——以青海阿克楚克塞矿区火山碎屑岩为例

王福平1, 李刚1, 高元宏2,3, 段隆臣4, 刘海声2,3   

  1. 1. 吉林大学应用技术学院, 长春 130021;
    2. 青海省第二地质矿产勘查院, 西宁 810028;
    3. 青海省岩心钻探工程技术研究中心, 西宁 810028;
    4. 中国地质大学(武汉)工程学院, 武汉 430074
  • 收稿日期:2018-01-22 出版日期:2019-07-26 发布日期:2019-07-26
  • 通讯作者: 李刚(1986-),男,博士研究生,讲师,主要从事钻探工艺及钻井液应用方面的研究,E-mail:ligcl@jlu.edu.cn E-mail:ligcl@jlu.edu.cn
  • 作者简介:王福平(1964-),男,副教授,主要从事钻井液应用方面的研究,E-mail:wangfp@jlu.edu.cn
  • 基金资助:
    青海省科技计划项目(2015-SF-211)

Effect of Drilling Fluid Properties on Pyroclastic Rock Collapsing: A Case Study of Pyroclastic Rock in Akechukesai Mining Area of Qinghai

Wang Fuping1, Li Gang1, Gao Yuanhong2,3, Duan Longchen4, Liu Haisheng2,3   

  1. 1. Applied Technology College of Jilin University, Changchun 130021, China;
    2. Qinghai Second Institute of Geology and Mineral Resources Exploration, Xining 810028, China;
    3. Qinghai Core Drilling Engineering Technology Research Center, Xining 810028, China;
    4. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China
  • Received:2018-01-22 Online:2019-07-26 Published:2019-07-26
  • Supported by:
    Supported by Science and Technology Project of Qinghai Province(2015-SF-211)

摘要: 为解决火山碎屑岩在钻进中易剥落、易崩塌的问题,探讨钻井液性能对火山碎屑岩崩解性的影响,以青海阿克楚克塞矿区火山碎屑岩为例,分析了其岩石样品的矿物成分,进行了岩石样品烘干和浸水循环实验,采用多元线性回归分析法分析了原1#、2#钻井液的主要参数和耐崩解性指数之间的关系。结果表明,钻井液的动塑比、静切力、失水量和漏斗黏度4项性能指标与火山碎屑岩崩解性的相关性可达83.37%,其中动塑比对火山碎屑岩崩解性的影响尤为显著。通过调整水解聚丙烯酰胺和褐煤树脂质量分数提高了钻井液的动塑比和稳定性,从而获得优选钻井液配方:水+4%膨润土+3% Na2CO3+0.1% NaOH+0.15% MV-CMC(中黏钠羧甲基纤维素)+0.5% LV-CMC(低黏钠羧甲基纤维素)+2% SPNH(褐煤树脂)+0.08% PHP(水解聚丙烯酰胺)。现场应用表明,钻进至429.00 m深度时使用优选钻井液孔底沉渣厚度较1#钻井液降低了89.7%,较2#钻井液降低了80.3%。

关键词: 阿克楚克塞, 火山碎屑岩, 耐崩解性指数, 钻井液性能

Abstract: In order to solve the problem of exfoliation and collapse of pyroclastic rocks during drilling, the authors studied the effect of drilling fluid performance on the disintegration of pyroclastic rocks. The samples of pyroclastic rocks in the Akechukesai mining area of Qinghai were taken to analyze the mineral composition of rocks, and the sample drying and soaking cycle experiments were carried out. The relationship between the main parameters of the original 1# and 2# drilling fluids and the slake durability index was analyzed by multiple linear regression analysis. It shows that the correlation between the dynamic performance ratio, static shear force, water loss, funnel viscosity of the drilling fluid and the disintegration of pyroclastic rocks can reach 83.37%. The effect of dynamic plastic ratio on the collapsing of pyroclastic rocks is particularly significant. By adjusting the mass fraction of hydrolyzed polyacrylamide and lignite resin to improve the dynamic fluid ratio and stability of the drilling fluid, the drilling fluid formulation is optimized as:water +4% bentonite +3% sodium carbonate +0.1% sodium hydroxide +0.15% medium viscosity sodium carboxymethyl cellulose +0.5% low viscosity sodium carboxymethyl cellulose +2% lignite resin + 0.08% hydrolyzed polyacrylamide. The field application results show that when drilling to the depth of 429.00 m, the thickness of residual cuttings at the bottom of the hole with the optimized drilling fluid is 89.7% lower than that with the 1# drilling fluid, and 80.3% lower than that with the 2# drilling fluid.

Key words: Akechukesai, pyroclastic rock, slake durability index, drilling fluid properties

中图分类号: 

  • P634.6
[1] 高元宏,梁俭,刘鹏,等.青海东昆仑重点成矿带岩石钻进特性及金刚石钻头使用效果分析[J].地质科技情报,2017,36(5):228-231. Gao Yuanhong, Liang Jian, Liu Peng, et al. Characteristics of Rock Drilling and the Effect of Diamond Bits Used in the Key Metallogenic Belt in East Kunlun, Qinghai[J]. Geological Science and Technology Information, 2017,36(5):228-231.
[2] 王达,何远信.地质钻探手册[M].长沙:中南大学出版社, 2014. Wang Da, He Yuanxin. Geological Drilling Handbook[M]. Changsha:Central South University Press, 2014.
[3] Zou Jie, Chen Liyi, Wang Sheng, et al. Analysis on Rock Properties Based on Exploration of Hole Wall's Stability[J]. Procedia Engineering, 2014, 73:110-117.
[4] 贾铎.钻井液工程师技术手册[M].北京:石油工业出版社, 2015. Jia Duo. Drilling Fluid Engineer Technology Manual[M]. Beijing:Petroleum Industry Press, 2015.
[5] Hashemi S S, Momeni A A, Melkoumian N. Investigation of Borehole Stability in Poorly Cemented Granular Formations by Discrete Element Method[J]. Journal of Petroleum Science & Engineering, 2014, 113(1):23-35.
[6] 乌效鸣,蔡记华,胡郁乐,等.钻井液与岩土工程浆液[M].武汉:中国地质大学出版社,2014. Wu Xiaoming, Cai Jihua, Hu Yule, et al. Drilling Fluid and Geotechnical Slurry Material[M]. Wuhan:China University of Geosciences Press, 2014.
[7] 朱发宪,牟发权,张海兰.青海果洛龙洼金矿复杂地层钻井液与钻进方法研究[J].矿产勘查, 2014,5(4):635-638. Zhu Faxian, Mou Faquan, Zhang Hailan. Study on Drilling Fluid and Drilling Technology in the Complicated Strata in the Guoluolongwa Gold Deposit, Qinghai[J]. Mineral Exploration, 2014, 5(4):635-638.
[8] 青海省岩心钻探工程技术研究中心. 青海省重点勘查区深部钻探技术研究[R] 西宁:青海省国土资源厅,2012. Qinghai Core Drilling Engineering Technology Research Center. Research on Deep Drilling Technology in Key Exploration Areas of Qinghai Province[R]. Xining:Department of Land and Resources of Qinghai Province, 2012.
[9] 闫佳铭.青海东昆仑阿克楚克塞铜镍矿床地质特征及成因探讨[D].长春:吉林大学,2017. Yan Jiaming. Study on Geological Characteristics and Genesis of Akechukesai Copper-Nickel Deposit in East Kunlun, Qinghai Province[D]. Changchun:Jilin University,2017.
[10] 丁清峰,金圣凯,王冠,等.青海省都兰县果洛龙洼金矿成矿流体[J].吉林大学学报(地球科学版), 2013, 43(2):415-426. Ding Qingfeng, Jin Shengkai, Wang Guan, et al. Ore-Forming Fluid of the Guoluolongwa Gold Deposit in Dulan County, Qinghai Province[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(2):415-426.
[11] 王浪,邓辉,邓通海,等.泥岩耐崩解性和颗粒粒径相关性的试验研究[J].长江科学院院报, 2017, 34(8):120-124. Wang Lang, Deng Hui, Deng Tonghai, et al. Correlation Between Disintegration Resistance and Particle Size of Mudstone[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(8):120-124.
[12] 梁冰,曹强,王俊光,等.弱崩解性软岩干-湿循环条件下崩解特性试验研究[J].中国安全科学学报,2017,27(8):91-96. Liang Bing, Cao Qiang, Wang Junguang, et al. Experimental Study on Slaking Characteristics of Feeble Disintegration Soft Rock in Drying-Wetting Cycle[J]. China Safety Science Journal, 2017, 27(8):91-96.
[13] 柴肇云,张亚涛,张学尧.泥岩耐崩解性与矿物组成相关性的试验研究[J].煤炭学报, 2015,40(5):1188-1193. Chai Zhaoyun,Zhang Yatao,Zhang Xueyao. Experimental Investigations on Correlation with Slake Durability and Mineral Composition of Mudstone[J]. Journal of China Coal Society, 2015, 40(5):1188-1193.
[14] 郑克清.复杂地层钻探护壁堵漏工艺研究与应用[D].长沙:中南大学,2012. Zheng Keqing.Technology Research and Application on Wall Protection and Leaking Stoppage in Complex Formation Drilling[D]. Changsha:Central South University, 2012.
[15] 皮跃进,刘文华.安溪黄厝坪铁矿区复杂地层钻孔护壁堵漏实践[J].探矿工程(岩土钻掘工程), 2011, 38(9):16-17,20. Pi Yuejin, Liu Wenhua. Practice of Wall Protection and Leakage Control in Complex Formation of Huangcuoping Iron Mine of Anxi[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2011, 38(9):16-17,20.
[16] 段隆臣,刘鹏,高元宏,等.青海野马泉矿区岩石可钻性的分析和应用[J].探矿工程(岩土钻掘工程), 2013,40(10):1-4. Duan Longchen, Liu Peng, Gao Yuanhong. Analysis and Application of Rock Drillability in Qinghai Yemaquan Mine[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2013,40(10):1-4.
[17] 刘鹏,王道宽,乌效鸣,等.青海野马泉矿区地层破碎程度评价及钻井液体系研究[J].探矿工程(岩土钻掘工程), 2013,40(11):5-9. Liu Peng, Wang Daokuan, Wu Xiaoming, et al. Evaluation on Stratum Fragmentized Degree and Study on Drilling Fluid System for Yemaquan Mining Area of Qinghai[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2013,40(11):5-9.
[18] 煤和岩石物理力学性质测定方法:GB/T 23561.16-2010[S].北京:中国标准出版社,2010. Methods for Determining the Physical and Mechanical Properties of Coal and Rock:GB/T 23561.16-2010[S]. Beijing:Standards Press of China,2010.
[1] 沈艳杰, 程日辉, 赵春满, 黄党委, 于振锋, 杨伟航. 与火山作用有关的岩系测井识别与物源分析--以松南十屋油田营城组为例[J]. J4, 2012, 42(3): 590-599.
[2] 董林森, 刘立, 蒙启安, 张革, 王力娟, 赵爽, 周冰. 蒙古国塔木察格盆地塔南凹陷铜钵庙组火山碎屑岩中片钠铝石胶结物的成因[J]. J4, 2011, 41(2): 421-431.
[3] 彭晓蕾, 曾翔鹏, 洪雪. 拉布达林盆地上库力组火山碎屑岩成岩作用特征[J]. J4, 2010, 40(4): 961-970.
[4] 黄玉龙, 王璞珺, 邵锐. 火山碎屑岩的储层物性--以松辽盆地营城组为例[J]. J4, 2010, 40(2): 227-236.
[5] 付广, 胡明, 于丹. 火山岩盖层类型及封气能力--以松辽盆地徐家围子断陷为例[J]. J4, 2010, 40(2): 237-244.
[6] 李飞, 程日辉, 王璞珺, 侯景涛. 松辽盆地东缘下白垩统营城组二段火山碎屑岩的发育特征[J]. J4, 2009, 39(5): 803-810.
[7] 曹瑞成,曲希玉,文 全,鲍春艳,刘剑营,刘 娜,刘 立. 海拉尔盆地贝尔凹陷储层物性特征及控制因素[J]. J4, 2009, 39(1): 23-0030.
[8] 李春柏,张新涛,刘 立,任延广,孟 鹏. 布达特群热流体活动及其对火山碎屑岩的改造作用--以海拉尔盆地贝尔凹陷为例[J]. J4, 2006, 36(02): 221-0226.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .
[2] 王谦,吴志芳, 张汉泉,莫修文. 随机分形在刻划储层非均质特性中的应用[J]. J4, 2005, 35(03): 340 -0345 .
[3] 李雪平,唐辉明. 基于GIS的分组数据Logistic模型在斜坡稳定性评价中的应用[J]. J4, 2005, 35(03): 361 -0365 .
[4] 薛永超, 程林松, 付 广. 大庆长垣以东地区登二段泥质岩盖层封气能力综合评价[J]. J4, 2005, 35(05): 626 -631 .
[5] 薛林福,潘保芝,米石云,石广仁. 沉积过程的三维计算机模拟及其应用[J]. J4, 2005, 35(04): 475 -0480 .
[6] 黄继国,魏海娟,王立军,王铁军,俞 双,黄国鑫. 三相生物流化床处理啤酒废水[J]. J4, 2005, 35(04): 510 -0514 .
[7] 李绪谦,商书波,林亚菊,周洪义,侯 戈. 石油类污染物在包气带土层中的水化学迁移率测定[J]. J4, 2005, 35(04): 501 -0504 .
[8] 吕凤军,邢立新,范继璋,潘 军. 基于统计识别模型的遥感蚀变信息提取[J]. J4, 2005, 35(04): 535 -0538 .
[9] 来雅文,王林根,肖国拾,甘树才,段国正. 黔西玄武岩铂族元素赋存状态及地质意义[J]. J4, 2005, 35(05): 607 -610 .
[10] 田纹全, 王璞珺,李嵩龄,孙晓猛,温暖,刘新. 新疆东天山哈密五堡地区中奥陶世大柳沟组火山岩岩石学和地球化学特征[J]. J4, 2005, 35(03): 296 -0301 .