吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (5): 1431-1437.doi: 10.13278/j.cnki.jjuese.20180047

• 地质工程与环境工程 • 上一篇    下一篇

多孔介质中热蒸汽的迁移特性及其修复氯苯污染土壤的效果

赵勇胜1,2, 杨元元1,2, 高鹏龙3, 康学赫1,2, 王昊颖1,2, 常月华1,2   

  1. 1. 地下水资源与环境教育部重点实验室(吉林大学), 长春 130021;
    2. 吉林大学新能源与环境学院, 长春 130021;
    3. 国家能源投资集团, 内蒙古 鄂尔多斯 017200
  • 收稿日期:2018-03-08 发布日期:2019-10-10
  • 作者简介:赵勇胜(1961-),男,教授,博士生导师,主要从事污染场地控制与修复方面的研究,E-mail:zhaoyongsheng@jlu.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(41530636);吉林大学研究生创新基金项目(2017146)

Migration Characteristics of Steam and Its Remediation to Chlorobenzene Contaminated Soil

Zhao Yongsheng1,2, Yang Yuanyuan1,2, Gao Penglong3, Kang Xuehe1,2, Wang Haoying1,2, Chang Yuehua1,2   

  1. 1. Key Lab of Groundwater Resources and Environment(Jilin University), Ministry of Education, Changchun 130021, China;
    2. College of New Energy and Environment, Jilin University, Changchun 130021, China;
    3. The National Energy Investment Group, Ordos 017200, Inner Mongolia, China
  • Received:2018-03-08 Published:2019-10-10
  • Supported by:
    Supported by National Natural Science Foundation of China (41530636) and Graduate Student Innovation Fund Project (2017146)

摘要: 蒸汽注射法是一种新近发展起来并对包气带非水相液体(NAPLs)污染修复具有较好应用前景的修复方法。为了探讨热蒸汽在非饱和多孔介质中的运移特征和蒸汽注射技术修复氯苯污染土壤的效果,本文通过一维模拟柱分别开展了热蒸汽在多孔介质中的迁移规律实验和蒸汽注射修复氯苯实验。研究表明:模拟柱中给定点处温度随时间变化可分为环境温度段、升温段和饱和蒸汽温度段3个阶段,随着温度锋面向下迁移,其迁移速度逐渐减小;模拟柱中的压力分布在蒸汽覆盖区域且空间分布呈线性规律,给定点处的压力随时间先增加后趋于平稳;实验结束后测得的水饱和度随蒸汽迁移距离的增加逐渐增加。在注入蒸汽质量流量为0.3 kg/h和氯苯初始质量分数为56.8 mg/kg的条件下,热蒸汽修复细砂中氯苯3.5 h后去除率达98.0%。模拟柱底部因蒸汽冷凝水达到饱和而产生出流液,出流10 min时出流液中氯苯最大质量浓度达到152.98 mg/L,70 min后出流液中氯苯质量浓度低于7.00 mg/L;介质中氯苯质量分数随距离的增加而增加,最大残留量为0.36 mg/kg。蒸汽注射法有效地改善了SVE(土壤气相抽提)法"拖尾"现象。

关键词: 蒸汽注射, 包气带, 迁移, 氯苯

Abstract: Steam injection is a newly developed and promising soil remediation technology for non-aqueous phase liquids (NAPLs) in a vadose zone. In order to investigate the migration characteristics of hot steam in unsaturated porous media and evaluate the effectiveness of steam injection for remediation of chlorobenzene contaminated soil, the authors carried out a steam migration experiment in porous media and steam injection remediation experiment of chlorobenzene through one-dimensional simulated column. The results indicated that the temperature of the given point in the simulated column can be divided into three stages, namely, the environment temperature stage, the heating stage, and the saturated steam temperature stage. The migration velocity of temperature front decreased with distance. The pressure was distributed in the steam-occupied region, and the spatial distribution was linear, and the pressure showed an increase first and then tended to balance over time in a given location. At the end of the experiment, the water saturation measured gradually increased with the migration distance of the steam. The steam injection flow rate was 0.3 kg/h and initial mass fraction of chlorobenzene was 56.8 mg/kg. The removal rate of chlorobenzene in fine sand by hot steam was 98% after 3.5 h. Outflow was produced at the bottom of the simulated column due to the saturation of steam condensate water. The mass concentration of chlorobenzene in the effluent reached the maximum of 152.98 mg/L after 10 min of outflow; while the concentration of chlorobenzene in the effluent was less than 7 mg/L after 70 min. The concentration of chlorobenzene in the medium increased with the distance, maximum residual amount is 0.36 mg/kg. This result shows that steam injection can effectively improve the smearing in contrast to soil vapor extraction.

Key words: steam injection, vadose zone, transport, chlorobenzene

中图分类号: 

  • X53
[1] Richard J,Paul T, Brent S, et al. In Situ Thermal Remediation of DNAPL Source Zones[R].[S.l.]Oregon Health and Science Univ Portland, 2011.
[2] James W M, Robert M C. A Review of Immiscible Fluids in the Subsurface:Properties, Models, Characterization and Remediation[J]. Journal of Contaminant Hydrology, 1990, 6:107-163.
[3] Pankow J F, Cherry J A. Dense Chlorinated Solvents andOther DNAPLs in Groundwater:History, Behavior, and Remediation[J]. Portland:Waterloo Press. 1996.
[4] USEPA. Treatment Technologies for Site Cleanup:Annual Status Report[R]. Washington D C:Office of Solid Waste and Emergency Response(12th),2007.
[5] 黄国强.土壤气相抽提过程中有机物的传质机理及数值模拟的研究[D]. 天津:天津大学,2002. Huang Guoqiang. Study on the Simulation of the Mass Transfer Mechanism and Numerical Organic Soil Vapor Extraction Process[D]. Tianjin:Tianjin University, 2002.
[6] USEPA. Development of Recommendations and Methods to Support Assessment of Soil Venting Performance and Closure[R]. Washingtong D C:Office of Research and Development,2001.
[7] 赵勇胜.地下水污染场地的控制与修复[J].吉林大学学报(地球科学版),2007,27(2):303-311. Zhao Yongsheng. Groundwater Pollution Control and Remediation[J]. Journal of Jilin University(Earth Science Edition),2007, 27(2):303-311.
[8] 赵勇胜.地下水污染场地的控制与修复[M].北京:科学出版社,2015:167-172. Zhao Yongsheng. Groundwater Pollution Control and Remediation[M]. Beijing:Science Press, 2015:167-172.
[9] 殷甫祥,张胜田,赵欣,等.气相抽提法(SVE)去除土壤中挥发性有机污染物的实验研究[J].环境科学,2011,32(5):1454-1461. Yin Fuxiang, Zhang Shengtian, Zhao Xin,et al. Removal of Volatile Organic Compounds in Soils by Soil Vapor Extraction (SVE)[J]. Environmental Science, 2011, 32(5):1454-1461.
[10] USEPA. Technology News and Trends:Steam Injections Combined with SVE Accelerate Cleanup of Brownfield 2007[R]. Washington D C:USEPA Office of Solid Waste and Emergency Response, Response, National Service Center for Environmental Publications, 2007.
[11] Udell K S. Heat and Mass Transfer in Clean-up of Underground Toxic Wastes[J]. Annual Reviews of Heat Transfer, 1996, 7:333-405.
[12] Heron G, Christensen T H, Enfield C G. Soil Heating for Enhanced Remediation of Chlorinated Solvents:A Laboratory Study on Resistive Heating and Vapor Extraction in a Silty, Low-Permeable Soil Contaminated with Trichloroethylene[J]. Environmental Science and Technology,1998, 32(10):1474-1481.
[13] Sleep B E, McClure P D. The Effect of Temperature on Adsorption of Organic Compounds to Soils[J]. Canadian Geotechnical Journal, 2001, 38:46-52.
[14] Jeffers P M, Ward L M, Woytowitch L M, et al. Homogeneous Hydrolysis Rate Constants for Selected Chlorinated Methanes, Ethanes, Ethenes, and Propanes[J]. Environmental Science and Technology, 1989, 23(8):965-969.
[15] Newmark R L, Aines R D. Dumping Pump and Treat:Rapid Cleanups Using Thermal Technology[R]. Livermore, CA:Lawrence Livermore National Laboratory,1997.
[16] 廖志强.土壤中挥发性有机物的气相抽提处理热强化技术研究[D].南昌:东华理工大学,2013. Liao Zhiqiang. The Research About Remediation of Volatile Organic Contaminant by Thermal Enhanced Soil Vapor Extraction[D]. Nanchang:East China University of Science and Technology, 2013.
[1] 洪梅, 杨慧萍, 陈韶音. 聚合物改性硫化亚铁在饱和多孔介质中的迁移性能[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1121-1128.
[2] 郝立波, 吴超, 赵新运, 赵玉岩, 陆继龙, 魏俏巧. 治岭头金矿围岩蚀变特征及其意义[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1104-1118.
[3] 陈随海, 韩润生, 申屠良义, 吴鹏, 邱文龙, 文德潇. 滇东北矿集区昭通铅锌矿区蚀变岩分带及元素迁移特征[J]. 吉林大学学报(地球科学版), 2016, 46(3): 711-721.
[4] 赵林, 莫惠婷, 郑义. 滨海盐碱地区包气带中淡水透镜体维持机理[J]. 吉林大学学报(地球科学版), 2016, 46(1): 195-201.
[5] 李杨, 王清, 王坛华. 冻土水热耦合模型数值求解及结果检验[J]. 吉林大学学报(地球科学版), 2015, 45(1): 207-213.
[6] 乔冈,王文科. 西北干旱内陆盆地区裸土蒸发强度[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1327-1332.
[7] 何雨江,蔺文静,王贵玲. 利用TDR100系统原位监测深厚包气带水热动态[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1972-1979.
[8] 霍思远,靳孟贵,梁杏. 包气带弱渗透性黏土透镜体对降雨入渗补给影响的数值模拟[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1579-1587.
[9] 魏华玲,周国华,孙彬彬,刘占元,曾道明. 浙江省东部土壤元素地球化学特征及意义[J]. 吉林大学学报(地球科学版), 2013, 43(2): 564-572.
[10] 邹东雷, 唐抒圆, 熊厚峰, 唐绍福, 李春华, 陈鹏. β-环糊精交联聚合物对氯苯的吸附特性[J]. J4, 2012, 42(4): 1166-1172.
[11] 姚鑫, 张永双, 熊探宇, 孙岳. 基于干涉雷达的玉树地震断裂运动模式与地震迁移趋势分析[J]. J4, 2012, 42(2): 440-448.
[12] 程东会, 王文科, 侯光才, 杨红斌, 李瑛, 张二勇. 毛乌素沙地植被与地下水关系[J]. J4, 2012, 42(1): 184-189.
[13] 李绪谦, 宋爽, 李红艳, 孙大志, 朴明月, 朱雅宁. 有机污染物(菲)在弱透水层中的越流迁移特征[J]. J4, 2011, 41(3): 840-846.
[14] 赵勇胜, 王冰, 屈智慧, 郑苇, 贾旭, 孙猛. 柴油污染包气带砂层中的自然衰减作用[J]. J4, 2010, 40(2): 389-393.
[15] 秦传玉, 赵勇胜, 郑苇, 李雨松, 孙猛. 空气扰动技术对地下水中氯苯污染晕的控制及去除效果[J]. J4, 2010, 40(1): 164-168.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘兆顺,尚金城,许文良,靳 克. 吉林省东部资源型县域经济与生态环境协调发展分析--以汪清县为例[J]. J4, 2006, 36(02): 265 -0269 .
[2] V.P.Onischin,陈 晨,赵秉成,朱 英. 新式整体不提钻切削具可换式钻头[J]. J4, 2006, 36(02): 309 -0312 .
[3] 付广,王有功,苏玉平. 古龙凹陷青山口组超压源岩天然气扩散速度演化史[J]. J4, 2007, 37(1): 91 -0097 .
[4] 刘正宏,徐仲元,杨振升,陈晓峰. 变质构造岩类型及其特征[J]. J4, 2007, 37(1): 24 -0030 .
[5] 谭惠,李殿超,杨殿范, 王瑛玮. 掺铁-TiO2/膨润土复合光催化材料制备及性能[J]. J4, 2007, 37(1): 204 -0208 .
[6] 杨双玲,刘万洙,于世泉,王国军,黄玉龙. 松辽盆地火山岩储层储集空间特征及其成因[J]. J4, 2007, 37(3): 506 -0512 .
[7] 曹剑峰,王凯军,姜纪沂,冶雪艳. 黄河下游断流对沿岸地下水形成与开发的影响[J]. J4, 2007, 37(5): 937 -0942 .
[8] 车茜,陈剑平,阙金声. 基于粗糙集的可拓评判权值确定[J]. J4, 2008, 38(2): 268 -0272 .
[9] 高彦伟,董德明,陈殿友,张岩坤,韩晓华. 时域克里格方法在地表水水质预测中的应用[J]. J4, 2008, 38(3): 444 -0447 .
[10] 叶栋成,慕山, 陶月赞. 地下水补给对河流水质模型的影响[J]. J4, 2008, 38(4): 644 -0648 .