吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (5): 1425-1430.doi: 10.13278/j.cnki.jjuese.20180204

• 地质工程与环境工程 • 上一篇    下一篇

青海共和盆地干热岩地热储层水力压裂物理模拟和裂缝起裂与扩展形态研究

周舟1, 金衍1, 曾义金2, 张旭东2, 周健2, 汪文智1, 孟翰1   

  1. 1. 中国石油大学(北京)油气资源与探测国家重点实验室, 北京 102249;
    2. 中国石化石油工程技术研究院, 北京 100101
  • 收稿日期:2018-07-27 发布日期:2019-10-10
  • 通讯作者: 金衍(1972-),男,教授,主要从事油气井岩石力学与工程方面的研究,E-mail:jiny@cup.edu.cn E-mail:jiny@cup.edu.cn
  • 作者简介:周舟(1985-),男,副教授,主要从事非常规储层岩石力学与水力压裂方面的研究,E-mail:zhouzhou@cup.edu.cn
  • 基金资助:
    国家重点研发计划项目(2018YFB1501802-03);中国石油大学(北京)科研基金项目(2462016YJRC017)

Experimental Study on Hydraulic Fracturing Physics Simulation, Crack Initiation and Propagation in Hot Dry Rock Geothermal Reservoir in Gonghe Basin, Qinghai

Zhou Zhou1, Jin Yan1, Zeng Yijin2, Zhang Xudong2, Zhou Jian2, Wang Wenzhi1, Meng Han1   

  1. 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China;
    2. Sinopec Research Institute of Petroleum Engineering, Beijing 100101, China
  • Received:2018-07-27 Published:2019-10-10
  • Supported by:
    Supported by National Key R & D Program of China (2018YFB1501802-03) and Research Foundation of China University of Petroleum (Beijing) (2462016YJRC017)

摘要: 水力压裂是青海共和盆地干热岩地热资源开发的难点技术问题之一。本文基于升级改造的大尺寸真三轴水力压裂物理模拟实验系统模拟干热岩储层高温高压环境,利用青海共和盆地露头岩心进行水力压裂物理模拟实验,揭示干热岩储层水力裂缝的起裂和扩展规律。通过物理模拟实验发现:干热岩储层裂缝起裂可以通过文中提出的起裂模型判断起裂方式和预测起裂压力;水力裂缝在岩石基质中的扩展形态简单,仅沿最大主应力方向延伸;但是水力裂缝会受到岩石中弱面的影响,发生转向沿弱面延伸,形成较复杂的裂缝形态。因此,建议在干热岩储层实际施工中,在天然裂缝发育较丰富的层段开展水力压裂,以实现复杂裂缝网络提取地热能。

关键词: 干热岩, 水力压裂, 起裂模型, 扩展形态, 共和盆地, 储层, 地热

Abstract: Hydraulic fracturing is one of the most important technical challenges in the development of hot dry rock geothermal reservoirs in Gonghe basin, Qinghai. Based on the advanced large-scale true triaxial hydraulic fracturing simulation experimental system, the authors studied the hydraulic fracture initiation and propagation in hot dry rock geothermal formations with high temperature and high pressure. The samples were from the outcrop core of Gonghe basin. According to the experimental result, the hydraulic fracture initiation and pressure could be predicted by the crack initiation model proposed in this paper. The propagation in the hot dry rock matrix has a simple extension along only with the direction of the maximum horizontal stress. The hydraulic fractures, however, are affected by natural fractures to achieve larger stimulation reservoir volume. Therefore, it is suggested that in the field, the hydraulic fracturing treatment should be in the formations rich in natural fractures so as to get a complex fracture network for geothermal energy extracting.

Key words: hot dry rock, hydraulic fracturing, initiation model, fracture propagation, Gonghe basin, reservoirs, geotherm

中图分类号: 

  • P314.9
[1] 陈勉,陈治喜,黄荣樽.大斜度井水压裂缝起裂研究[J].石油大学学报(自然科学版),1995,19(2):30-35. Chen Mian, Chen Zhixi, Huang Rongzun. Research on Hydraulic Fracture Cracking in High Angle Wells[J]. Journal of the University of Petroleum (Natural Science Edition), 1995, 19(2):30-35.
[2] Ishida T, Chen Q, Mizuta Y. Effect of Injected Water on Hydraulic Fracturing Deduced from Acoustic Emission Monitoring[J]. Pure and Applied Geophysics, 1997, 150:627-646.
[3] 金衍,陈勉.天然裂缝地层斜井水力裂缝起裂压力模型研究[J].石油学报, 2006,27(5):124-126. Jin Yan, Chen Mian. Hydraulic Fracturing Initiation Pressure Models for Directional Wells in Naturally Fractured Formation[J]. Journal of Petroleum, 2006, 27(5):124-126.
[4] Hunt S P, Morelli C P. Cooper Basin HDR Seismic Hazard Evaluation:Predictive Modelling of Local Stress Changes Due to HFR Geothermal Energy Operations in South Australia[R]. Adelaide:University of Adelaide, 2006:50.
[5] Zhou J, Chen M, Jin Y. Analysis of Fracture Propagation Behavior and Fracture Geometry Using a Tri-Axial Fracturing System in Naturally Fractured Reservoirs[J]. International Journal of Rock Mechanics Mining Science and Geomechanics, 2008, 45:1143-1152.
[6] Reinicke A, Rybacki E, Stanchits S. Hydraulic Fracturing Stimulation Techniques and Formation Damage Mechanisms-Implications from Laboratory Testing of Tight Sandstone-Proppant Systems[J]. Chemie der Erde-Geochemistry, 2010, 70(Sup. 3):107-117.
[7] 卢运虎,陈勉,金衍.各向异性地层斜井井壁稳定性研究[J]. 石油学报, 2013, 34(3):563-568. Lu Yunhu, Chen Mian, Jin Yan. Borehole Instability Mechanism of a Deviated Well in Anisotropic Formations[J]. Journal of Petroleum, 2013,34(3):563-568.
[8] Frash L P, Gutierrez M, Hampton J. True-Triaxial Apparatus for Simulation of Hydraulically Fractured Multi-Borehole Hot Dry Rock Reservoirs[J]. International Journal of Rock Mechanics & Mining Sciences, 2014, 70:496-506.
[9] 许天福,张延军,于子望. 干热岩水力压裂实验室模拟研究[J].科技导报, 2015,33(19):22-27. Xu Tianfu, Zhang Yanjun, Yu Ziwang. Laboratory Study of Hydraulic Fracturing on Hot Dry Rock[J].Technology Review, 2015, 33(19):22-27.
[10] 樊冬艳,孙海,姚军.增强型地热系统不同注采井网参数分析[J]. 吉林大学学报(地球科学版), 2019, 49(3):798-807. Fan Dongyan, Sun Hai, Yao Jun. Parametric Analysis of Different Injection and Production Well Pattern in Enhanced Geothermal System[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(3):798-807.
[11] 金衍,陈勉.天然裂缝地层垂直井水力裂缝起裂压力模型研究[J].石油学报, 2005,26(7):113-114. Jin Yan, Chen Mian.Initiation Pressure Models for Hydraulic Fracturing of Vertical Wells in Naturally Fractured Formation[J]. Journal of Petroleum, 2005, 26(7):113-114.
[1] 罗腾, 冯晅, 郭智奇, 刘财, 刘喜武. 基于模拟退火粒子群优化算法的裂缝型储层各向异性参数地震反演[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1466-1476.
[2] 陈思芮, 曲希玉, 王冠民, 王清斌, 曹英权. 渤中凹陷CFD18-2油田高岭石胶结作用及其对储层物性的影响[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1235-1246.
[3] 孙泽飞, 史建儒, 连碧鹏, 康志帅, 申建, 杨函. 紫金山地区煤系致密砂岩储层特征及主控因素[J]. 吉林大学学报(地球科学版), 2019, 49(4): 959-969.
[4] 杨新乐, 秘旭晴, 张永利, 李惟慷, 戴文智, 王亚鹏, 苏畅. 注热联合井群开采煤层气运移采出规律数值模拟[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1100-1108.
[5] 单祥, 郭华军, 郭旭光, 邹志文, 李亚哲, 王力宝. 低渗透储层孔隙结构影响因素及其定量评价——以准噶尔盆地金龙2地区二叠系上乌尔禾组二段为例[J]. 吉林大学学报(地球科学版), 2019, 49(3): 637-649.
[6] 樊冬艳, 孙海, 姚军, 李华锋, 严侠, 张凯, 张林. 增强型地热系统不同注采井网参数分析[J]. 吉林大学学报(地球科学版), 2019, 49(3): 797-806.
[7] 吴云霞, 吕凤军, 邢立新, 刘新星. 独山城地区多元信息干热岩预测模型[J]. 吉林大学学报(地球科学版), 2019, 49(3): 880-892.
[8] 张斌, 顾国忠, 单俊峰, 王璞珺, 郭强, 徐琛琛, 杨帆, 陈星州. 辽河东部凹陷新生界火成岩岩性、岩相特征和储层控制因素[J]. 吉林大学学报(地球科学版), 2019, 49(2): 279-293.
[9] 李欢, 王清斌, 庞小军, 冯冲, 刘晓健. 渤海湾盆地辽东凹陷旅大29构造沙二段近源砂砾岩体优质储层形成机理[J]. 吉林大学学报(地球科学版), 2019, 49(2): 294-309.
[10] 高科, 高红通, 谭现锋, 赵长亮, 李梦. 仿生异型齿钻头在干热岩钻探中的应用[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1804-1809.
[11] 朱毅秀, 单俊峰, 王欢, 蔡国刚. 辽河大民屯凹陷中央构造带太古宇变质岩储层岩性特征分析[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1304-1315.
[12] 徐守余, 路研, 王亚. 基于支持向量机的浊积扇低渗透储层流动单元研究[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1330-1341.
[13] 瞿雪姣, 李继强, 张吉, 赵忠军, 戚志林, 罗超. 辫状河致密砂岩储层构型单元定量表征方法[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1342-1352.
[14] 赵谦平, 张丽霞, 尹锦涛, 俞雨溪, 姜呈馥, 王晖, 高潮. 含粉砂质层页岩储层孔隙结构和物性特征:以张家滩陆相页岩为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1018-1029.
[15] 邓馨卉, 刘财, 郭智奇, 刘喜武, 刘宇巍. 济阳坳陷罗家地区各向异性页岩储层全波场地震响应模拟及分析[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1231-1243.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!